

Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures

G. K. White and S. B. Woods

Phil. Trans. R. Soc. Lond. A 1959 **251**, 273-302

doi: 10.1098/rsta.1959.0004

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[273]

ELECTRICAL AND THERMAL RESISTIVITY OF THE TRANSITION ELEMENTS AT LOW TEMPERATURES

By G. K. WHITE* AND S. B. WOODS

Division of Pure Physics, National Research Council, Ottawa

(Communicated by N. F. Mott, F.R.S.—Received 5 August 1958)

CONTENTS

		PAGE		PAGE
1.	Introduction	273	3. Experimental results	282
	1.1. Aim of the experiments	273	3·1. Electrical resistivity	282
	1·2. Theoretical	274	3.2. Thermal resistivity	288
	1.3. Previous experimental work	276	4. Discussion	292
2.	2. Experimental procedure	278	4·1. Electrical resistivity 4·2. Thermal resistivity	292 295
	2·1. Cryostat and associated equipment	278	5. Conclusions	297
	2·2. Accuracy of results	279	Appendix	298
	2·3. Specimens	281	References	300

The results of measurements on 20 transition elements are reported giving values for the thermal resistivity, W, from 2 to about 140 °K and for electrical resistivity, ρ , from 2 to about 300 °K. Values of the 'ideal' resistivities, W_i and ρ_i (due to scattering of the electrons by thermal vibrations), are deduced from these and tabulated for various temperatures. Comparisons are made with values for Cu, Ag, Au and Na and with the predictions of the 'standard' theory, i.e. solutions of the transport equation developed by Bloch, Grüneisen, Wilson, etc. Excepting Mn, ρ_i follows a Bloch-Grüneisen function tolerably down to $\theta_D/5$, although slight anomalies are shown by V, Cr, Fe, Co and Ni; at low temperatures behaviour is varied but below 10 °K in Mn, Fe, Co, Ni, Pd, Pt and perhaps in W and Nb, ρ_i appears to vary nearly as T^2 . The parameter, $\rho_i M\theta_D^2 \Omega^{\frac{1}{2}}$ (at 273 °K) has rather similar values for different members of each group, e.g. for Ti, Zr and Hf of group IVA.

The ideal thermal resistivity, W_i , can generally be approximated by the relation,

$$W_i/W_{\infty} = 2(T/\theta)^2 J_3(\theta/T),$$

although for many elements, W_i falls more rapidly than T^2 below $\theta/10$. Measurements on the relatively poor conductors, e.g. Ti, Zr and Hf, suggest the presence of an appreciable lattice conductivity, which affects the confidence with which values can be deduced for W_i in these elements.

1. Introduction

1.1. Aim of the experiments

Some years ago one of us took part in a study of the electrical and thermal conductivity of the alloy systems Ag+Pd and Ag+Cd, at low temperatures (see, for example, Kemp, Klemens, Sreedhar & White 1956). These experiments were specifically intended to investigate the result of changing the effective number of conduction electrons on the lattice component of the heat conductivity and on the electronic transport processes. During this

* Now at National Standards Laboratory, C.S.I.R.O., Sydney, Australia.

35

Vol. 251. A. 995. (Price 9s. 6d.)

[Published 12 March 1959

work measurements were also made on pure palladium (Kemp, Klemens, Sreedhar & White 1955) and later on iron and nickel (Kemp, Klemens & White 1956). Analysis of the results indicated that at quite low temperatures ($T \ll \theta_D$) the 'ideal' or intrinsic thermal resistivity and the electrical resistivity varied approximately as T^2 and T^3 , respectively. This suggested that the theory of the effect of interband transition on resistivity (as developed by Wilson 1938) might be applicable over quite a wide temperature range.

This stimulated our interest in the behaviour of the transition elements, particularly as it appeared that, for a large number of them, little information was available concerning their conduction properties. Indeed, for some the room-temperature values of electrical resistivity quoted in different standard texts and tables are widely at variance with one another.

General

1.2. Theoretical

We shall briefly quote some results of the basic theory of electron transport processes founded on the work of Sommerfeld, Bloch and others and refer for a complete description to Wilson (1953). Among recent reviews which deal with this topic and with the short-comings of this standard theory are those of Jones (1956), Klemens (1956, dealing chiefly with thermal transport) and Sondheimer (1957). To a first approximation the total resistivity is obtained by the addition of the residual resistivity produced by static defects (ρ_0 , W_0 in the electrical and thermal cases, respectively) and the 'ideal' component produced by thermal vibrations of the lattice (ρ_i , W_i), that is

$$\rho = \rho_0 + \rho_i$$
 (Matthiessen's rule) and $W = W_0 + W_i$; (1)

further the residual resistivities are related by the Wiedemann-Franz-Lorenz (W.-F.-L.) relation

$$\rho_0/W_0 T = L \simeq 2.45 \times 10^{-8} \,\mathrm{W} \,\Omega \,\mathrm{deg}^{-2}$$
(2)

and the ideal resistivities should be given by

$$\rho_i = 4A(T/\theta)^5 J_5 \tag{3}$$

and

$$W_{i} = \frac{4A}{LT} (T/\theta)^{5} \left[\left\{ 1 + \frac{3}{2\pi^{2}} \frac{\zeta}{D} \left(\frac{\theta}{T} \right)^{2} \right\} J_{5} - \frac{1}{2\pi^{2}} J_{7} \right], \tag{4}$$

where

$$J_n(\theta/T) = \int_0^{\theta/T} \frac{x^n \, \mathrm{d}x}{(e^x - 1)(1 - e^{-x})}.$$
 (5)

In these expressions, A is a constant, proportional to the square of the electron-lattice interaction constant C, ζ is the Fermi energy, and the parameter, $\zeta/D = 2^{\frac{1}{2}}N^{\frac{2}{3}}$, where N is the effective number of conduction electrons per atom. At high and low temperatures (3) and (4) have exact solutions yielding the following proportionalities:

$$\rho_i \propto T^5, \quad W_i \propto T^2 \quad \text{for} \quad T \leqslant \theta,
\rho_i \propto T, \quad W_i \simeq \text{constant} \quad \text{for} \quad T > \theta.$$

and

Electrical resistivity

As Wilson and the review authors have discussed, ρ_i may be adequately represented over a fairly wide temperature range by a suitable choice of θ , but no single θ value gives good agreement from high to very low temperatures.

For high temperatures the free electron model leads to a value

$$\rho_i \simeq 4.8 \times 10^{-2} \left(\frac{C}{\zeta}\right)^2 \left(\frac{T}{M\theta^2 \Omega^{\frac{1}{2}}}\right) \text{ ohm cm,}$$
 (6)

where the atomic volume Ω is expressed in cubic angströms. As C/ζ is expected to be of the order of unity, the parameter $\rho_i M\theta^2 \Omega^{\frac{1}{3}}/T$ should not vary greatly among metals to which the model is at all applicable (see Mott 1936, or Mott & Jones 1936). In fact the average of the experimental values for the alkali metals is ~ 0.06 (cf. theoretical 0.048), and for Cu, Ag and Au is ~ 0.08 , but for transition elements is an order of magnitude higher. Mott (1936) suggested that the high probability of electron transitions from the s- to the d-band in these latter elements produced the high resistivity responsible for this, and later Wilson (1938) showed that

 $\rho_i(sd) = d\left(\frac{T}{\theta}\right)^3 \int_{\theta - T}^{\theta/T} \frac{x^3 dx}{(e^x - 1)(1 - e^{-x})} = d(T/\theta)^3 J_3(\theta/T),$ (7)

where d is a constant, so that if at low temperatures s-d transitions are not prohibited by conservation laws, $\rho_i(sd)$ should vary as T^3 . If on the other hand, s-d transitions become very unlikely below a characteristic temperature, θ_E , then we should expect

$$\rho_i(sd) \propto e^{-\theta_E/kT}$$
.

Finally, we may mention the effect of electron-electron interactions examined theoretically by Baber (1937) and more recently in the collective electron treatments (see, for example, Pines 1955, 1956). These may contribute a component of resistivity proportional to T^2 which may be appreciable at very low temperatures in the transition elements, and explain earlier observations made by de Haas & de Boer (1933) on platinum.

Thermal resistivity

Equation (4) leads to a low-temperature relation $W_i = BT^n (n = 2.0)$, so that

$$W = W_0 + BT^n \quad (T \leqslant \theta/10), \tag{8}$$

$$B = \beta N^{\frac{2}{3}} W_{\infty} / \theta^2, \tag{9}$$

 W_{∞} is the ideal thermal resistivity at high temperatures and $\beta = 95.3$. The more exact solutions of the transport equation by Sondheimer (1950) and Klemens (1954), give values of β nearer to 70 but leave a small maximum (but see also Ziman 1954) in W_i (at or near $T \simeq \theta/4$) which is not observed experimentally. Analysis of the experimental results assuming $\theta = \theta_p$ (the Debye specific heat θ) leads to β values in the range 10 to 25; the exponent n (for $T \leq \theta/10$) lies close to the theoretical value of 2.0 for the alkali metals but may reach 2.3 or 2.4 for some other elements.

Apart from this variation in index n, experimental values of W_i/W_{∞} seem better represented by an empirical expression (see MacDonald, White & Woods 1956)

$$\frac{W_i}{W_{\infty}} = 2(T/\theta)^2 J_3(\theta/T) \tag{10}$$

$$\simeq 14 \cdot 4(T/\theta)^2 \quad \text{for} \quad T \leqslant \theta/10. \tag{11}$$

$$\simeq 14\cdot 4(T/\theta)^2$$
 for $T \leqslant \theta/10$. (11)

Finally, it is expected theoretically that at high temperatures, where elastic scattering predominates, the electrical resistivity and thermal resistivity (or thermal conductivity, λ) should be related, as they are at very low temperatures by equation (2). That is

$$ho \lambda / T \equiv
ho / W T \simeq
ho_i / W_{\infty} T = L \quad ext{for} \quad T > \theta.$$

275

1.3. Previous experimental work

General

The principal measurements of electrical resistivity of the elements in the transition metal group have been those of Meissner & Voigt (1930) and of Potter (1941); the former authors measured the resistance at the ice-point, near 90 and 80 °K, at 20·4 °K and at liquid-helium temperature on specimens of nearly all the transition elements. Potter's measurements on nine transition elements were done at 14, 20, 77 and 90 °K and at numerous temperatures from 100 °K upwards. Values of room-temperature or ice-point resistance and some isolated low-temperature values are listed in reviews by Grüneisen (1928), Gerritsen (1956) and by van Arkel (1939) among others. However, most earlier measurements do not allow a detailed examination of the ideal electrical resistivity over the continuous temperature range from the neighbourhood of θ_D down to temperatures of $\theta/20$ or less, because of (a) insufficient measurements, (b) lack of purity of specimens, or (c) lack of knowledge of the absolute resistivity values.

For thermal conductivity, the experimental data obtained by Rosenberg and Mendelssohn (see Rosenberg 1955) for a number of the transition elements enable us to examine their low-temperature behaviour. This and other data, are listed in the reviews of R. L. Powell & Blanpied (1954), R. W. Powell (1955); Klemens (1956) and in some original references listed below. The *Rare metals handbook* (Hampel 1954) is also a useful source of data and original references.

Ti, Zr and Hf

de Haas & Voogd (1928) examined the electrical resistance of hafnium at some temperatures between 1 and 98 °K. Higher purity specimens of zirconium and hafnium were measured at 90 °K and above by Adenstedt (1952). The metallurgical monographs of McQuillan & McQuillan (1956) on titanium and Miller (1954) and Lustman & Kerze (1955) on zirconium provide a useful record of data obtained at normal temperatures. Values of electrical resistivity at room temperature (295 °K) for Ti, Zr (see Treco 1953 in particular) and Hf are about 42, 42·2 and $30\,\mu\Omega$ cm, respectively.

The thermal conductivities of titanium and zirconium were measured by Rosenberg (1955) below 40 °K; of titanium by Silverman (1953) above room temperature, and by Rigney & Bockstahler (1951) at 0 °C, their ice-point value being $\lambda = 0.20 \,\mathrm{W\,cm^{-1}\,deg^{-1}}$. For zirconium Bing, Fink & Thompson (1951) and also Deem (1953a) found λ near room temperature was $0.21 \,\mathrm{W\,cm^{-1}\,deg^{-1}}$ and for hafnium plus $2 \,\mathrm{wt}$. % zirconium, Deem (1953b) gives $\lambda = 0.22$.

V, Nb and Ta

The vanadium and niobium specimens used by Meissner & Voigt (1930) and Potter (1941) were extremely impure. However, from these sources and from Gerritsen (1956) and van Arkel (1939), it seems that room temperature values of electrical resistivity for V, Nb, and Ta are 20 to 21, about 14, and $13.5\,\mu\Omega$ cm, respectively.

The thermal conductivities of these elements, which become electrically superconducting at sufficiently low temperatures have been studied in some detail below 10 °K by various experimenters; however, between 10 and 100 °K, the work of Rosenberg (1955) appears to

be the only source of data and his specimens were not generally of sufficiently high purity to provide unambiguous information about the ideal thermal resistivity in this temperature region. For tantalum, a room temperature value of $\lambda = 0.54 \,\mathrm{W\,cm^{-1}\,deg^{-1}}$ was obtained by Barratt & Winter (1925); recently Weeks & Smith (1955) found for vanadium with $<0.4\,\%$ impurities that $\lambda = 0.35_7 \,\mathrm{W\,cm^{-1}\,deg^{-1}}$ at $70\,^\circ\mathrm{C}$; for niobium, Tottle (1957) has found $\lambda = 0.523 \,\mathrm{W\,cm^{-1}\,deg^{-1}}$ at $0.0 \,\mathrm{C}$ and $\lambda = 0.543 \,\mathrm{at}\,100\,^\circ\mathrm{C}$.

Cr, Mo and W

For these three elements measurements of electrical resistivity have been made by Meissner & Voigt and by Potter; also Van den Berg (1938) made measurements on tungsten below 20 °K and data are given in the monographs of Sully (1954) for chromium and of Northcott (1956) for molybdenum. Reliable room-temperature values of electrical resistivity for Cr, Mo and W are 13 to 14, about 5.5, and $5.4 \mu\Omega$ cm, respectively.

The compilation of Powell & Blanpied (1954) shows that a number of measurements of heat conductivity have been made for both tungsten and molybdenum below room temperature. We have made no measurements on molybdenum but used those of Rosenberg (1955) below 100 °K and Kannuluik (1933) above 90 °K to obtain values of W_i , the ideal thermal resistivity. For tungsten, the ranges covered by Rosenberg and by Kannuluik do not overlap, but with our measurements and data of Grüneisen & Goens (1927) and de Haas & de Nobel (1938), they provide a continuous record of W_i . For chromium considerable data on the effect of heat treatment at normal and elevated temperatures has been given by Powell & Tye (1956). Their work indicates that for high-purity Cr, $\lambda_{295} \simeq 0.8_6$; for Mo and W previous work indicates that λ_{295} has approximate values of 1.45 and 1.7 W cm⁻¹ deg⁻¹, respectively.

Mn, Tc and Re

The monograph of Sully (1955) on manganese, gives room temperature values for the electrical resistivity of α -manganese varying from 150 to 720 $\mu\Omega$ cm, the most probable value lying in the range 150 to 250. For technetium we are unaware of any measurements. Data for rhenium are given by Meissner & Voigt (1930) and by Hulm & Goodman (1957) below room temperature. These indicate that for rhenium $\rho_{295} \simeq 19$ to $20\,\mu\Omega$ cm.

The only thermal conductivity measurements appear to be those of Rosenberg on α -manganese below 35 °K, and for β -manganese a value of $\lambda \simeq 0.05 \,\mathrm{W\,cm^{-1}\,deg^{-1}}$ obtained by Reddemann (1935) at 83 °K.

Fe, Ru and Os

Isolated values of electrical resistivity have been obtained for iron below room temperature by Holborn (see, for example, the review of Grüneisen 1928) and by Meissner & Voigt and others; below 20 °K by Olsen-Bär (1956). Some measurements on sintered rods of ruthenium at low temperatures have been made by Meissner & Voigt and by Justi (1949). For osmium the only apparent measurement is an approximate room temperature value of $9.5\,\mu\Omega$ cm (Blau 1905); earlier work on Fe and Ru suggests that the values of ρ_{295} for these elements in a pure form are respectively 9.9 and about $7.4\,\mu\Omega$ cm.

For iron, data have been obtained below 90 °K by Rosenberg (1955), from 20 to 90 °K by Grüneisen & Goens (1927) and by Powers, Ziegler & Johnston (1951) from 20 °K to room

temperature. At room temperature the work of Powers *et al.* and R. W. Powell (1955) indicates that $\lambda_{295} \simeq 0.82 \,\mathrm{W \, cm^{-1} \, deg^{-1}}$.

Co, Rh and Ir

As well as isolated values of electrical resistivity given by Grüneisen (1928), Meissner & Voigt (1930) and, for rhodium and iridium, by Potter (1941), more complete data for cobalt and rhodium below 20 °K have been given by Olsen-Bär (1956) and for rhodium and iridium above 80 °K by Powell & Tye (1955). Probable values of ρ_{295} for pure Co, Rh and Ir are about 5·9, 4·8 and 5·1 $\mu\Omega$ cm, respectively.

Only below 50 °K are there data for the thermal conductivity of pure cobalt (Rosenberg 1955). Rosenberg's measurements for rhodium and iridium ranged from 2 to about 30 °K, and those of Powell & Tye (1955) from 80 °K up to room temperature; these latter measurements gave $\lambda_{295} \simeq 1.51$ (Rh) and 1.46 (Ir) W cm⁻¹ deg⁻¹.

Ni, Pd and Pt

Olsen-Bär (1956) has examined the temperature variation of electrical resistivity of each of these elements below 20 °K. The importance of platinum as a resistance thermometer element has led to publication of considerable data, for example, by de Haas & de Boer (1933), by Los & Morrison (1951) and Hoge & Brickwedde (1939). The room-temperature resistivities of Ni, Pd and Pt appear to be 7·2, 10·7 and $10·7\,\mu\Omega$ cm, respectively. Rosenberg's thermal conductivity data for nickel, palladium and platinum extend from 2 to about 40 °K. For nickel, values above 30 °K were obtained by Powers *et al.* (1951) and de Nobel (1951) with rather impure specimens and do not give us information about the temperature variation of the ideal thermal resistivity. For palladium, values near 20 °K and near 80 °K were reported by Grüneisen & Reddemann (1934). Meissner (1915) has given values for platinum at a few points from 20 °K up to room temperature. From values listed by R. W. Powell (1955) and by R. L. Powell & Blanpied (1954), λ_{295} for pure Ni, Pd and Pt appears to be about 0·9, 0·7 and 0·7 W cm⁻¹ deg⁻¹.

2. Experimental procedure

2.1. Cryostat and associated equipment

Usually the determinations of both electrical and thermal conductivity are made on the same specimen, in rod form, mounted in a cryostat similar to that described previously (White & Woods 1955). One end of the specimen is soldered to a copper post in the cryostat and a specimen heater is attached to the other end. Copper wires are soldered (or otherwise attached) to intermediate points on the rod to act as both thermal and electrical potential leads, to which the gas thermometer bulbs and fine electrical potential lead-wires are in turn soldered. However, in some cases (notably using fine-wire specimens), only the electrical resistivity has been measured and in these cases, the wires are surrounded by a small pressure of helium exchange gas to preserve temperature equilibrium between the specimens and the temperature-controlled surroundings.

The results for Cr and some of those described below for Pd, Fe, Ni, Ti and Zr were done by one of us with colleagues at the C.S.I.R.O. Division of Physics (Sydney, Australia) and were performed in a rather similar cryostat (White 1953a).

Measurements of thermal conductivity were carried out over the range of temperatures from 1.8 to about 150 °K, above which radiation corrections and the time required to establish thermal equilibrium become intolerably large with the specimens and cryostats used. However, electrical resistance measurements were generally made from about 1.2 °K up to room temperature, cooled alcohol baths being used generally for temperature control above 160 °K.

RESISTIVITY OF TRANSITION ELEMENTS

2.2. Accuracy of results

The ratio of the length, l, to the cross-sectional area, A, of the specimens enters directly into determinations of the absolute resistivity values. This factor could be measured within a few parts in a thousand for regularly shaped specimens and the effective l/A for specimens of irregular shape was obtained by normalizing the ideal resistivity at room temperature (or at the ice point) to that for a uniform specimen. Thus the probable error in l/A seldom exceeded 1%, but may have reached 2% in one or two cases. For a single specimen, since l/A is involved in the same way in the calculation of electrical and thermal resistivities, values obtained for the Lorenz ratio, for example, are independent of l/A as are comparative values of resistivity.

Electrical resistivity

Relative errors arise chiefly in the determination of the potential difference across the specimen. For this a galvanometer amplifier (MacDonald 1947) was used which could normally be read to about one part in 400, but with specimens of relatively small l/A and low resistivity, smaller deflexions and therefore somewhat larger relative errors had to be tolerated. Errors in $\rho_i = \rho - \rho_0$ could have been substantially larger at low temperatures due to (a) the difference ρ_i being small in comparison with ρ or ρ_0 , (b) rapid variation in ρ_i with temperature so that small errors in the temperature measurement cause much larger apparent errors in ρ_i , (c) Matthiessen's rule $\rho = \rho_0 + \rho_i$, not being strictly valid.

Thermal resistivity

The major uncertainty in determining the temperature variation of thermal conductivity lies in the measurement of the difference in temperature of the gas thermometers, ΔT , or more precisely, of their pressure difference, ΔP . This latter quantity (5 to 10 mm oil) was measured with an accuracy of about ± 0.02 mm. A slow drift in the temperature of the cryostat will affect ΔT and hence ΔP markedly, but our methods of temperature control seem to avoid this. The electrical power dissipated in the specimen heater is measured to considerably better than 1/10%, but the radiation heat losses were sometimes appreciable at around 100%K. When calculating the thermal conductivity a radiation correction was applied which often amounted to 2 or 3% at 100%K, but was itself not very accurately known. Errors in the radiation correction are probably most serious in poor conductors to which end contacts are made only with some difficulty, because then there is considerable uncertainty in the temperature of the heater. Conduction losses through the vacuum and along the thermometer and electrical connexions to the specimen were kept well below 1% of the heat flow along the specimen at all temperatures. Altogether the errors in λ should not be more than 1% below 100%K but may be 2 or 3% at 150%K.

Table 1. Details of specimens

		purity	diam.	$10^3 ho_0$	$ ho_{i(295)}$	$10^{8}L_{0}$		
no.	source	(%)	(mm)	ρ_{295} ($\mu\Omega$ cm) ($W\Omega m deg^{-2}$		ref.
$egin{array}{c} { m Ti} \ { m 1} \ { m Ti} \ { m 2} \end{array}$	JM 4233 Heraeus	98 high	3 $2 \cdot 6 \times 0 \cdot 1$	$\begin{array}{c} 330 \\ 68.5 \end{array}$	$egin{array}{c} 47 \ 42 \cdot 7 \end{array}$	3	ann. vac. 950 °C ann. vac. 700 °C	A —
Ti3	Winegard		1.6×3.1	45.6	43.1	$2 \cdot 7_4$	ann. vac. $(10^{-6}, 60 \text{ h})$	
Ti4	Winegard	99.99	1.6×3.1	60.9	43.8	$2 \cdot 8_{1}$	800 °C as rolled	
Ti5	Winegard		4.9×3.1	54.7	$43 \cdot 2$	$3 \cdot 1_4$	ann. vac. (10 ⁻⁶ , 60 h) 800 °C	
$rac{\operatorname{Zr} 1}{\operatorname{Zr} 2}$	JM 5000 Mackay	99·99 iodide bar	$\begin{matrix} 3 \\ 3.8 \times 1.9 \end{matrix}$	$50 \\ 45 \cdot 3$	45 47	2.4	ann. vac. 750 °C as received and cut	A —
Zr3	Betterton	99.9_{5}	0.6	5.96	42.4	0.45*	ann. vac. (10^{-6})	
${ m Zr}4 \ { m Zr}4a$	Betterton Betterton	$99.9_{5} \\ 99.9_{5}$	$0.6 \ (\times 4) \ 0.6 \ (\times 4)$	see	text text	$2 \cdot 45 * 2 \cdot 45 *$	ann. vac. (10^{-6}) ann. vac. (10^{-6})	
Hf1	Foote	see below	1.5×5	116.5	$32 \cdot 3$	$3 \cdot 4$	ann. vac. 750 °C	В
Hf2 Hf3	Betterton	99.9 96+4 wt % Zr	0.4 0.64	$52\cdot7$ $85\cdot2$	$30.9 \\ 34.0$	- Marine	ann. vac. 1000 °C ann. vac. 1000 °C	
V1	Mackay		see below	129	(20.8)†		as received and rolled	В
V2	Electro	99.9	3.55	135	$19.8_{5}^{'}$	2.57	as received	В
V4	Electro	99.9	3.55 3×1.5	196	18·9 (13·9)†	2.85	ann. vac. 1300 °C as received	B B
$egin{array}{c} { m Nb1} \\ { m Nb2} \end{array}$	Mackay JM 10230			$\frac{156}{350}$	14.5	_	as received	В
Nb3	Fansteel	99.9	0.5	30	14.5_{6}	•,	drawn, ann. vac. (to m.p.)	В
Nb5	Fansteel	99.9	1.59	31.7	$14 \cdot 4_4$	2.49	drawn	В
Tal	Heraeus	high	2.9×0.11	65	13.2	************	ann. vac. 700 °C	
Ta2 Ta3	Fansteel Fansteel	99.9	$0.56 \\ 1.5 \ (\times 4)$	$^{13}_{16\cdot1}$	$12.9 \\ 12.9_5$	$2\overline{\cdot 45}$	ann. vac. 2500 °C ann. vac. 2500 °C	
Crl	A.R.L.	99.99_{8}	3	19.7	J	$2 \cdot 35$	cold worked (ductile)	\mathbf{C}
Cr2	A.R.L.	99.99_{8}^{8}	3	14.0		2.44	no. 1 ann. vac. 1050 °C	C
Cr3 Cr4	A.R.L. A.R.L.	99.99_{8} 99.99_{8}	3	$\begin{array}{c} 9.65 \\ 6.95 \end{array}$	12.9	2.53 2.48	partially recryst. no. 3 ann. vac. 1050 °C	C
Cr 5	A.R.L.	99.998	3	4.24	$12 {\cdot} 9_5$	$2 \cdot 44$	fully recryst.	\mathbf{C}
Mol	Mackay	99.9	0.77	36	(5.55)†	********	ann. vac. 1350 °C	
$rac{\mathrm{Mo}2}{\mathrm{Mo}3}$	Mackay Mackay	99.9	$\begin{array}{c} 0.77 \\ 1.33 \end{array}$	$\begin{array}{c} \textbf{45.1} \\ \textbf{40.2} \end{array}$	$5\cdot 3_2 \ 5\cdot 3_4$		as received as received	
Wla	JM3610	99.98	4	5.5	5.35		ann. vac. 1350 °C	D
$rac{\mathrm{W}1b}{\mathrm{W}2}$	JM 3610 JM 3610	99.98 99.98	$\frac{4}{1}$	$egin{array}{c} 5.9 \ 8.6 \end{array}$	$5.31 \ (5.58)$ †	2.65	ann. vac. 1350 °C electropol.,	D D
	J.110010				(0.00)		ann. 1350 °C vac.	
Mnl	Mackay		$\sim 3 \times 0.7$	112	137‡	20	ann. vac. 600 °C	E E
$rac{\mathrm{Mn2}}{\mathrm{Mn3}}$	JM 10792 JM 10792	99.99	$\sim 3 \times 1.1$ $\sim 3.3 \times 1.4$	870 73	$ ho = 378 \ddagger 144 \ddagger$	$\frac{30}{3}$	as received ann. vac. 600 °C	E
Tc				-				-
Rel	Mackay	99.5	10×0.75	40.1	18.8	2.56	as rolled	C
Re2 Re3	Mackay Mackay	$\begin{array}{c} 99.5 \\ 99.5 \end{array}$	$10 \times 0.75 \\ 2 \times 0.7$	$24 \cdot 6 \\ 27$	$18.65 \ (19.5) \dagger$	$2 \cdot 63$	ann. vac. 700 °C ann. vac. 700 °C	C
Re4	Hulm	99.99	6	0.737	(18.9)†	$2 \cdot 43$	arc melted	C
Re5	Chase	?	0.25	2.77	18.6	9.50	ann. vac. to m.p.	
Fe1 Fe2	JM 5092 Vacuum		$\begin{matrix} 2 \\ 1 \times 0.5 \end{matrix}$	$24.6 \\ 9.61$	9·85 9·82	2·50 —	ann. vac. 750 °C ann. see below	A —
Ru2 Ru3		~99·99 ~99·99	~6 ~5	$\begin{array}{c} 27 \cdot 7 \\ 2 \cdot 14 \end{array}$	$(8.27) \S (7.37) \S$	$\begin{array}{c} 2 \cdot 40 \\ 2 \cdot 46 \end{array}$	arc melting arc melting	$_{\mathbf{F}}^{\mathbf{F}}$
Os 2		~99.99	6	10.8	(9·13)§	2.60	arc melting	F
Os3		~99.99	1.88	9.46	9.13	2.61	arc melting	F

TABLE 1 (cont.)

no.	source	purity (%)	diam. (mm)	$\frac{10^3\rho_0}{\rho_0}$	$ ho_{i(295)} \ (\mu\Omega\ { m cm})$	$10^8 L_0$ (W $\Omega \deg$	²) treatment	ref.
Co 1a Co 1b Co 2	JM 9484 JM 9484 JM 9484	99·999 99·999 99·999	2 2 0·5	$ ho_{295} \ 15.3 \ 15.5 \ 11.0$	5.82 5.78 (5.67) †	2.55	ann. vac. 700 °C ann. vac. 700 °C ann. vac. 800 °C	D D
Rh1 Rh2	Baker > JM 8208	> 99·9 99·997	1·5 1·5	83 1.75	4·80 4·78	$2.73 \\ 2.41$	ann. vac. 1050 °C ann. vac. 1050 °C	H H
Ir2	JM	99.98	$2 \cdot 0$	$20 \cdot 2$	5.01	2.50	ann. vac. 1300°C	H
Ni 1 Ni 2 Ni 3	JM4497 > JM10389 JM10389	99·99 99·99 ₇ 99·99 ₇	$2 \\ 2 \\ 0.63$	$4.81 \\ 3.23 \\ 4.51$	$7.30 \\ 7.04 \\ (7.33)$ †	2·38 —	ann. vac. 750 °C ann. vac. 800 °C ann. vac. 800 °C	A
Pd6 Pd7 Pd8 Pd9	JM2928 JM2928 JM2928 JM9401	99.99_{5} 99.99_{5} 99.999	$\begin{array}{c} 2 \\ 0.19 \\ 0.19 \\ 0.28 \end{array}$	1·75 4·0 15·7 1·73	10.6 10.6 (10.3_4) \uparrow (10.8_4) \uparrow	2·48 	ann. vac. 450 °C ann. vac. 450 °C ann. vac. 500 °C ann. vac. 900 °C	G
Pt 1 Pt 2 Pt-T 4 Pt 3	Baker Baker Morrison Baker	99·99 99·99 ?	$1.5 \\ 0.5 \\ \sim 0.1 \\ 0.8$	1·20 5·45 0·406 1·73	$(10\cdot3)^{\dagger}_{(10\cdot8)^{\dagger}}_{(?)^{\dagger}_{10\cdot42}}$	2·35 — —	ann. vac. 1050 °C ann. vac. 1050 °C thermometer ann. vac. 1050 °C	H H —
Compar Cu2 CuA Ag2 Ag4 AgA AuA Au4 Na	JM ASARCO JM JM JM JM JM JM See Macde	99-999 99-999 99-999 99-999		~3 1.62 ~0.5 ~1 3.83 3.17 ~3 Berman			ann. vac. 550 °C ann. vac. 530 °C ann. vac. 650 °C ann. vac. 650 °C ann. vac. 530 °C ann. vac. 530 °C ann. vac. 700 °C I; Powell & Blanpied	I J — K I 1954;

* As values of ρ taken for Zr4, 4a were unreproducible, ρ_0 was taken for Zr3 and λ_0/T for Zr4 and Zr4a (both the same to within 1%) and thus $L=\rho_0\lambda_0/T$ obtained. Later Zr4a was unclamped and measurements of ρ_0 on individual wires were found to be within 2% of values for Zr3.

† Owing to slight uncertainty l/A, resistivity values were later normalized assuming a value of $\rho_{i(295)}$ from the other specimens of more accurately known cross-section and length.

‡ Absolute values are very uncertain, see text.

Absolute values obtained by subsequent grinding of specimen to regular shape and redetermining $\rho(295), \rho(4.2).$

Owing to uncertainty in the diameter of these very fine wires, resistivity values were normalized using

values of $\rho_i(273)$ from review by Gerritsen (1956).

Under 'source' the commercial suppliers listed are: 'JM' for Johnson Matthey Ltd (London), 'Mackay' for A.D. MacKay Inc. (New York), 'Electro' for Electro Metallurgical Company (Niagara Falls, N.Y.), 'Fansteel' for Fansteel Metallurgical Corporation (Illinois), 'Chase' for Chase Brass and Copper Company (Connecticut), 'Vacuum' for Vacuum Metals Company (Massachusetts), 'Baker' for Baker Platinum Company (New Jersey), ASARCO for American Smelting and Refining Company (New York).

References: (A) Kemp, Klemens & White (1956); (B) White & Woods (1957d); (C) Harper, Kemp, Klemens, Tainsh & White (1957); (D) White & Woods (1957c); (E) White & Woods (1957b); (F) White & Woods (1958); (G) Kemp, Klemens, Sreedhar & White (1955); (H) White & Woods (1957a); (I) White (1953c); (J) White (1953b); (K) White (1953a).

2.3. Specimens

The specimens are listed in table 1 together with details of source, purity, dimensions, ratio of residual electrical resistance to room-temperature resistance, the 'ideal' electrical resistivity at room temperature, the value of the Lorenz ratio, $L_0 = \rho_0/W_0 T$, obtained at very low temperatures, treatment and references to any earlier reports of these measurements.

In addition to the sources listed in table 1, others to whom we are particularly grateful for their kind gifts or loans of samples are:

W. C. Heraeus GmbH of Hanau, West Germany; Dr W. C. Winegard of the Metallurgy Department of the University of Toronto; Dr J. O. Betterton Jr of the Oak Ridge National Laboratory (Tennessee); Foote Mineral Company of Pennsylvania (gift of hafnium arranged through the kindness of the Pittsburgh area office of the United States A.E.C.); Dr J. K. Hulm of the Westinghouse Research Laboratories; Dr J. A. Morrison of the Division of Pure Chemistry, N.R.C. (Ottawa) and finally the Aeronautical Research Laboratories (A.R.L.) of the Commonwealth of Australia, who through the kindness of Dr H. L. Wain supplied high purity chromium to one of the authors (G. K. W.) and his colleagues at the C.S.I.R.O. Division of Physics, Sydney.

Specimens were generally about 6 to 8 cm long, although some manganese, zirconium and titanium specimens were shorter. Lateral dimensions, i.e. diameter or lengths of sides of rectangular section specimens, are listed in the table. Specimens Zr 4 and Ta 3 were each composed of four wires, placed side by side to form rods.

Copper end-pieces and potential leads (usually $0.030\,\mathrm{in}$. diam. copper wires) were attached to the specimens with a non-superconducting solder, i.e. $\mathrm{Zn}+\mathrm{Cd}$ eutectic or $\mathrm{Bi}+\mathrm{Cd}$ eutectic solders, except where otherwise stated below. These solders were used so that small changes in the effective point of contact of the potential leads did not occur due to a superconducting layer on the specimen surface when the specimen was cooled to liquid-helium temperatures.

Further details of purity and method of mounting are given in the appendix for those specimens not adequately represented by the brief details in table 1 and not previously reported in the references listed there.

3. Experimental results

3.1. Electrical resistivity

The measured resistivity, ρ , increases approximately linearly with temperature above about 100 °K except for the elements V, Cr, Mn and Fe, Ni, Co. At low temperature it approaches a constant value ρ_0 .

In so far as the analysis of our results is concerned, we shall assume Matthiessen's rule is valid and that therefore

$$\rho_i = \rho - \rho_0$$

represents adequately the ideal resistivity due to scattering by thermal vibrations. Only in the case of niobium, owing to its high superconducting transition temperature $(T_c \simeq 9.2 \,^{\circ}\text{K})$, is there appreciable uncertainty in the value of ρ_0 .

In table 1 values are given of ρ_i at room temperature and also of the ratio ρ_0/ρ_{295} . This ratio is a measure of the purity of the sample; in most instances we have been able to secure specimens for which ρ_0 is 100 to 1000 times smaller than ρ_{295} . Low values of ρ_0 make it possible to study the temperature variation of ρ down to fairly low temperatures while the component ρ_i still remains an appreciable fraction of ρ .

Figures 1, 2 and 3 illustrate the behaviour of the resistivity of nine elements from the transition group over part of the temperature range below about 300 °K. The curve for

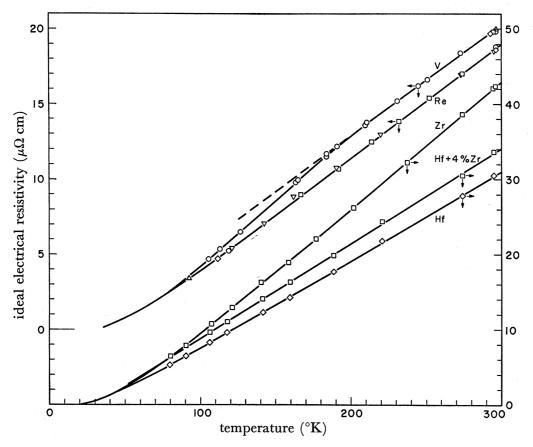


FIGURE 1. Ideal electrical resistivity of rhenium, vanadium, zirconium, hafnium and hafnium + 4 wt. % Zr. Specimens: $0, 1; 0, 2; \square, 3; \triangle, 4; \nabla, 5$.

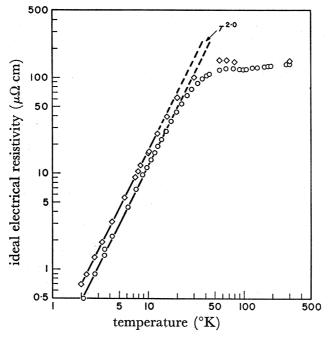
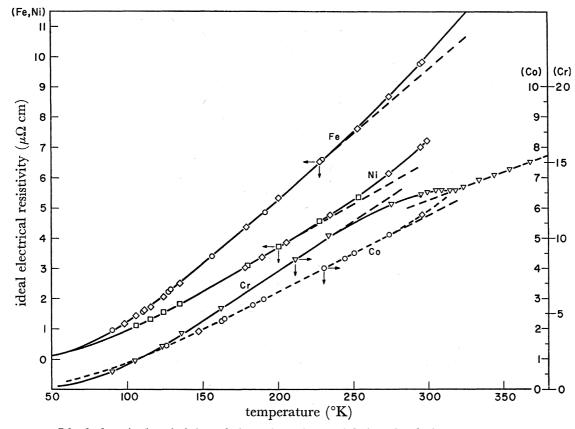
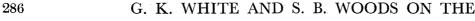
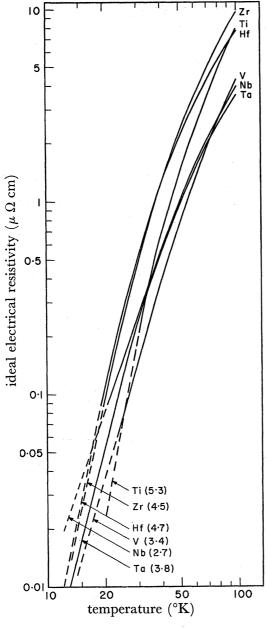


FIGURE 2. Ideal electrical resistivity of α -manganese. \circ , Mn 1 ($\rho_0 \simeq 16.8 \times 10^{-6} \Omega$ cm); \diamond , Mn 2 ($\rho_0 \simeq 11.3 \times 10^{-6} \Omega$ cm).

rhenium included in figure 1 is, superficially at least, typical of those obtained for the other transition metals and also for copper, silver and gold. The other curves shown here exhibit features peculiar to the metals for which they are drawn. For vanadium a change in slope occurs below about 200 °K. We observed that for both hafnium and zirconium the values of ρ_i for high-purity samples appeared to be noticeably less than for some earlier impure specimens. This apparent departure from Matthiessen's rule is illustrated in figure 1 by hafnium (pure) and hafnium plus 4 wt. % zirconium (Hf+8 at. % Zr) specimens.




Figure 3. Ideal electrical resistivity of chromium, iron, nickel and cobalt. $0, 1; 0, 2; \square, 3; \nabla, 5$.


In figure 2 values of ρ_i for α -manganese are shown on a logarithmic plot; in figure 3, ρ_i is shown for chromium with its peculiar flattening (see Sully (1955) for previous observations of this) at room temperature and for the three ferromagnetic elements for each of which ρ_i rises faster than linearly with temperature at normal temperatures.

For these and other elements, we have obtained smoothed values (from large-scale graphs) of ρ_i at various temperatures and recorded them in table 2. This table also includes values of θ_D , the electrical resistivity at $T = \theta_D$ (involving in some cases extrapolation of our data with the aid of earlier measurements, e.g. those of Potter (1941)) and some reduced resistivities, i.e. values of the ratio ρ_i/ρ_θ , which may be compared with values derived from equations (3) and (7) (see discussion below); ρ_θ here is the value of the ideal resistivity at a characteristic temperature, θ . The values of the Debye characteristic temperature, θ_D , calculated from specific heat measurements made in the approximate range $\theta/2$ to θ , i.e. high-temperature values of θ_D , have been used here. They were chosen from a study of review articles and compilations of data by Shiffman (1952), Blackman (1955), Keesom &

Table 2. Ideal electrical resistivities ($\mu\Omega$ cm) and some values of reduced resistivity $(
ho_i/
ho_{ heta})$

								(Pi/Pe)				
	Ti	\mathbf{Zr}	\mathbf{Hf}	\mathbf{v}	Nb	Ta	\mathbf{Cr}	Mo	W	Mn* Tc	Re	Fe
$ ho_{295}$	43.1	$42 \cdot 4$	30.6	19.9	14.5	13.1	12.9	$5 \cdot 3_3$	$5 \cdot 3_3$	136 —	18.6	9.8
$ ho_{273}$	39.0	38.6	28.0	18.3	13.5	$12 \cdot 1$	12.1	4.8_{4}^{3}	4.8	136	16.9	8.7
$ ho_{250}$	34.8	34.6	25.3	16.6_{5}	12.3	11.0	10.95	$4 \cdot 3_2$	$4\cdot 3_2^2$	133	15.2	7.5_{5}
$ ho_{220}$	$29 \cdot 3$	$29 \cdot 4$	21.7	14.5°	10.8	9.6	9.0	3.6	$3 \cdot 6_{\rm s}$	131	12.95	$6\cdot 2$
$ ho_{200}$	25.7	$26 \cdot 1$	19.3	12.9	9.8	8.6	7.7_{5}^{3}	$3 \cdot 1_{o}$	$3\cdot 2$	131	11.4°_{5}	5.3
$ ho_{180}$	$22 \cdot 1$	$22 \cdot 6$	16.9	11.2	8.7	7.6_{5}	6.4	$2 \cdot 7_3$	2.7_{8}^{2}	130	9.9_{5}^{3}	$4 \cdot 4_{0}$
$ ho_{160}$	18.5	19.3	14.5	9.5	7.5_{5}	6.6_5	$5\cdot 2$	$2 \cdot 2_7$	$2 \cdot 3_3$	127	8.4	3⋅5₅
$ ho_{140}$	14.8	16.0	$12 \cdot 2$	7.7_{5}	6.4	5.6	3.9	1.8_2	1.88	125 —	6.9	$2 \cdot 7_3$
$ ho_{120}$	$11 \cdot 2$	12.8	9.9	6.0	$5\cdot 2$	4.6	$2 \cdot 6_{6}$	1.36	1.44	123	$5 \cdot 3_5$	1.9_{5}
$ ho_{100}$	7.9	9.5_{5}	7.6	4.3	3.9_5	3.5_5	1.6_2	0.92	1.02	121	3.9_{5}	$1 \cdot 2_{\star}$
$ ho_{90}$	6.3_{5}	7.9_0	6.5	$3 \cdot 5_0$	$3 \cdot 3_0$	$3 \cdot 0_3$	$1 \cdot 1_{8}^{-}$	0.71_{4}	0.82_{0}	120	$3\cdot 2$	0.92
$ ho_{80}$	4.8_{5}^{3}	$6 \cdot 4_0$	$5 \cdot 4$	$2 \cdot 6_5$	$2 \cdot 6_8$	2.5_0	0.8_1	0.51_{5}^{*}	0.60_{0}^{0}	121 —	2.5_{3}	0.64
$ ho_{70}$	3.5	4.9_0	4.3	1.9_{0}°	2.0_{7}°	1.9_6	0.5_2	0.35_{4}^{3}	0.42_{5}	122 —	1.86	0.42
$ ho_{60}$	2.3	3.50	3.2	1.2_7	1.5	1.4_3	0.3^{2}_{0}	0.21_{6}^{4}	0.27_{1}	122 —	$1 \cdot 2_7$	0.25
$ ho_{50}$	1.4	$2 \cdot 2_{5}^{0}$	2.1	0.7_{5}	0.97	0.9_{5}°	0.165	0.113	0.15_{1}	117 —	0.77	0.13_5
$ ho_{40}$	0.65	$1 \cdot 2_0$	$1 \cdot 2_5$	0.3^{8}	0.5_{6}	0.5_{4}	0.07_8	0.04^{3}_{7}	0.06_{6}	105 —	0.37	0.06_{0}
$ ho_{30}$	0.2°_{0}	$0.4_{7}^{\circ} \ 0.23_{5}$	0.5_{1}°	0.1_{4}^{3}	0.25	0.2_3	0.02_{9}^{8}	0.012	0.02_{2}^{6}	82 —	0.11	0.02_{2}
$ ho_{25}$	$0.07_{5} \\ 0.02_{0}$	0.235	0.2_{6}^{-} 0.10_{5}	0.076	$\begin{array}{c} 0.1_5 \\ 0.08 \end{array}$	0.1_{2}^{3}	$0.015_{5} \\ 0.007_{2}$	0.004_{6}	$0.01\overline{1}_{5} \\ 0.005_{6}$	65	0.04_{7}	$0.01\bar{2}_{5}$
$ ho_{20}$	0.020	0.09 ₀ 0.02 ₅	0.10_{5} 0.02_{7}	0.03_{7}° 0.01_{4}°	0.03	$0.05_{1} \\ 0.01_{7}$	0.007_{2} 0.002_{7}		$0.003_{6} \\ 0.002_{4}$	46 — 28 —	$0.016_{5} \ 0.004_{5}$	0.00_{7}^{5} 0.003_{4}^{4}
$ ho_{15} ho_{10}$	_	0.025	0.027	0.014	0.035	0.003_{2}	0.0027		0.0024	12 —		$0.003_{4} \\ 0.001_{5}$
ρ_8						0 0002			_	8		0.0012
$ ho_6^{\circ}$										4.3 —	*******	
										î·9	Personne	-
θ_{D}^{4} (°K)	360	250	210	390	250	230	480	380	315	410	280	400
$ ho_{ heta}^{\mathbf{z}}$,	55.0	34.6	20.5	26.6	12.3	10.1	19.9	7.32	5.82		17.4_{5}	16.0
$\rho_{0.4 heta}$												
$\overline{\rho_{\theta}}$	0.284	0.276	0.285	0.343	0.321	0.310	0.364	0.287	0.270		0.273	0.222
$\rho_{0\cdot 2\theta}$	0.000	0.005		0.000		0.050		0.001				
	0.068	0.065	0.067	0.093	0.079	0.076	0.072	0.061	0.054	-	0.062	0.040
ρ_{θ}												
$\rho_{0\cdot 1\theta}$	0.0080	0.0068	0.007_{0}	0.013_{0}	0.012_{0}	0.0086	0.007_{3}	0.005_{2}	0.004_{6}		0.0046	0.0038
$ ho_{ heta}$												
$\underline{ ho_{0.07}}_{ heta}$	0.0014	0.0014	0.0012	0.0038	0.0045	0.0022	0.0021	0.00086	0.0013		0.00086	0.0011
$ ho_{ heta}$								·				
						0.000	0.0007		0.0005		0.0000	0.0004
$\rho_{0.05\theta}$	0.0002					บ•บบบอ	0.0007				v.m.z	
$rac{ ho_{0.05 heta}}{ ho_{ heta}}$	0.0002		-			0.0005	0.0007		0.0000		0.0002	0.0004
		Os	Co	 Rh	Ir			Pt		— —		
ρ_{θ}	Ru	Os 0.1	Co	Rh	Ir 50	Ni	Pd	Pt	Cu	Ag	Au	Na
$ ho_{ heta}$	Ru 7·3 ₇	$9 \cdot 1_{3}$	5·8 ₀	4.78	5.0^{4}	Ni 7:0.	Pd 10·5 ₅	10.42	Cu 1·70	1.61	Au 2·20	Na 4·8 ₄
$ ho_{ heta}$ $ ho_{295}$ $ ho_{273}$	Ru 7·3 ₇ 6·6 ₉	9·1 ₃ 8·3 ₅	$5.8_{0} \\ 5.1_{5}$	$\substack{4\cdot7_8\\4\cdot3_6^{}}$	$\substack{5 \cdot 0_7 \\ 4 \cdot 6_5}$	Ni $7 \cdot 0_4 \\ 6 \cdot 2_0$	Pd 10·5 ₅ 9·7 ₀	10·42 9·59	Cu 1·70 1·55	1·61 1·47	Au 2·20 2·01	Na 4·8 ₄ 4·4 ₀
$ ho_{ heta} ho_{295} ho_{273} ho_{250}$	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆	$9.1_{3} \\ 8.3_{5} \\ 7.5_{0}$	$5.8_{0} \\ 5.1_{5} \\ 4.5_{0}$	$4.7_8 \\ 4.3_6 \\ 3.9_0$	$5.0_{7} \\ 4.6_{5} \\ 4.1_{0}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \end{array}$	Pd 10.5_{5} 9.7_{0} 8.8_{2} 7.6_{2}	10·42 9·59 8·70	Cu 1·70 1·55 1·40	1·61 1·47 1·34	Au 2·20 2·01 1·83	Na 4·8 ₄ 4·4 ₀ 3·9 ₃
$ ho_{ heta} ho_{295} ho_{273} ho_{250} ho_{220}$	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂	$9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5$	$5.8_{0} \\ 5.1_{5} \\ 4.5_{0} \\ 3.7_{2}$	$4.7_8 \\ 4.3_6 \\ 3.9_0 \\ 3.3_1$	$5.0_{7} \\ 4.6_{5} \\ 4.1_{9} \\ 3.5_{0}$	$\begin{array}{c} \text{Ni} \\ 7.0_4 \\ 6.2_0 \\ 5.4_0 \\ 4.3_6 \\ 3.7_2 \end{array}$	Pd 10.5_{5} 9.7_{0} 8.8_{2} 7.6_{6} 6.9_{2}	10·42 9·59 8·70 7·54	Cu 1·70 1·55 1·40 1·20	1·61 1·47 1·34 1·16	Au 2·20 2·01 1·83 1·60	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36
$ ho_{ heta}$ $ ho_{295}$ $ ho_{273}$ $ ho_{250}$ $ ho_{220}$ $ ho_{200}$	Ru 7.3_7 6.6_9 5.9_6 5.0_2 4.3_9	$9 \cdot 1_3$ $8 \cdot 3_5$ $7 \cdot 5_0$ $6 \cdot 4_5$ $5 \cdot 7_0$	5.8_{0} 5.1_{5} 4.5_{0} 3.7_{2} 3.2_{3} 2.7_{5}	4.7_{8} 4.3_{6} 3.9_{0} 3.3_{1} 2.9_{2}	5.0_{7} 4.6_{5} 4.1_{9} 3.5_{0} 3.2_{0}	$\begin{array}{c} \text{Ni} \\ 7.0_4 \\ 6.2_0 \\ 5.4_0 \\ 4.3_6 \\ 3.7_2 \end{array}$	Pd 10.5_{5} 9.7_{0} 8.8_{2} 7.6_{6} 6.9_{0} 6.0_{c}	10·42 9·59 8·70 7·54 6·76	Cu 1·70 1·55 1·40 1·20 1·06	1·61 1·47 1·34 1·16 1·04 0·92	Au 2·20 2·01 1·83 1·60 1·44	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99
$ ho_{ heta}$ $ ho_{295}$ $ ho_{273}$ $ ho_{250}$ $ ho_{220}$ $ ho_{200}$ $ ho_{180}$	Ru 7.3_{7} 6.6_{9} 5.9_{6} 5.0_{2} 4.3_{8} 3.7_{5} 3.1_{0}	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀	5.8_{0} 5.1_{5} 4.5_{0} 3.7_{2} 3.2_{3} 2.7_{5}	$egin{array}{l} 4\cdot 7_8 \\ 4\cdot 3_6 \\ 3\cdot 9_0 \\ 3\cdot 3_1 \\ 2\cdot 9_2 \\ 2\cdot 5_2 \\ 2\cdot 1_2 \end{array}$	5.0_{7} 4.6_{5} 4.1_{9} 3.5_{0} 2.8_{0} 2.3_{2}	$ Ni \\ 7.0_4 \\ 6.2_0 \\ 5.4_0 \\ 4.3_6 \\ 3.7_2 \\ 3.1_0 $	Pd 10.5_{5} 9.7_{0} 8.8_{2} 7.6_{6} 6.9_{0} 6.0_{6}	10·42 9·59 8·70 7·54 6·76 5·97	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77-	1.61 1.47 1.34 1.16 1.04 0.92 0.79	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63
$ ho_{ heta}$ $ ho_{295}$ $ ho_{273}$ $ ho_{250}$ $ ho_{220}$ $ ho_{200}$ $ ho_{180}$ $ ho_{160}$	Ru 7.3_{7} 6.6_{9} 5.9_{6} 5.0_{2} 4.3_{8} 3.7_{5} 3.1_{0}	$9 \cdot 1_{3}$ $8 \cdot 3_{5}$ $7 \cdot 5_{0}$ $6 \cdot 4_{5}$ $5 \cdot 7_{0}$ $4 \cdot 2_{2}$ $3 \cdot 50$	5.8_{0} 5.1_{5} 4.5_{0} 3.7_{2} 3.2_{3} 2.7_{5} 2.2_{6} 1.7_{8}	$4 \cdot 7_8$ $4 \cdot 3_6$ $3 \cdot 9_0$ $3 \cdot 3_1$ $2 \cdot 9_2$ $2 \cdot 5_2$ $2 \cdot 1_2$ $1 \cdot 7_1$	5.0_{7} 4.6_{5} 4.1_{9} 3.5_{0} 2.8_{0} 2.3_{8} 1.9_{6}	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \end{array}$	$\begin{array}{c} \text{Pd} \\ 10.5_5 \\ 9.7_0 \\ 8.8_2 \\ 7.6_6 \\ 6.9_0 \\ 6.0_6 \\ 5.1_9 \\ 4.3_2 \end{array}$	10·42 9·59 8·70 7·54 6·76 5·97	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77-	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27
$ ho_{ heta}$ $ ho_{295}$ $ ho_{273}$ $ ho_{250}$ $ ho_{220}$ $ ho_{200}$ $ ho_{180}$ $ ho_{160}$ $ ho_{140}$	Ru 7.3_7 6.6_9 5.9_6 5.0_2 4.3_8 3.7_5 3.1_0 2.4_8 1.8_5	$9 \cdot 1_{3}$ $8 \cdot 3_{5}$ $7 \cdot 5_{0}$ $6 \cdot 4_{5}$ $5 \cdot 7_{0}$ $4 \cdot 2_{2}$ $3 \cdot 50$ $2 \cdot 70$	5.8_0 5.1_5 4.5_0 3.7_2 3.2_3 2.7_5 2.2_6 1.7_8 1.3_2	$egin{array}{l} 4\cdot 7_8 \\ 4\cdot 3_6 \\ 3\cdot 9_0 \\ 3\cdot 3_1 \\ 2\cdot 9_2 \\ 2\cdot 5_2 \\ 2\cdot 1_2 \\ 1\cdot 7_1 \\ 1\cdot 2_8 \end{array}$	5.0_{7} 4.6_{5} 4.1_{9} 3.5_{0} 3.2_{0} 2.8_{0} 2.3_{8} 1.9_{6} 1.5_{5}	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \end{array}$	Pd 10.5_5 9.7_0 8.8_2 7.6_6 6.9_0 6.0_6 5.1_9 4.3_3 3.4_2	$10 \cdot 42 \\ 9 \cdot 59 \\ 8 \cdot 70 \\ 7 \cdot 54 \\ 6 \cdot 76 \\ 5 \cdot 97 \\ 5 \cdot 18 \\ 4 \cdot 37_5 \\ 3 \cdot 56_5$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀	1.61 1.47 1.34 1.16 1.04 0.92 0.79_5 0.67_5 0.54_5	Au $2 \cdot 20$ $2 \cdot 01$ $1 \cdot 83$ $1 \cdot 60$ $1 \cdot 44$ $1 \cdot 28$ $1 \cdot 12$ $0 \cdot 95$ 5 $0 \cdot 79$ 0	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀	Ru 7.3_7 6.6_9 5.9_6 5.0_2 4.3_8 3.7_5 3.1_0 2.4_8 1.2_5	$9 \cdot 1_3$ $8 \cdot 3_5$ $7 \cdot 5_0$ $6 \cdot 4_5$ $5 \cdot 7_0$ $5 \cdot 0_0$ $4 \cdot 2_2$ $3 \cdot 50$ $2 \cdot 70$ $1 \cdot 90$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \end{array}$	$egin{array}{l} 4\cdot 7_8 \\ 4\cdot 3_6 \\ 3\cdot 9_0 \\ 3\cdot 3_1 \\ 2\cdot 9_2 \\ 2\cdot 5_2 \\ 2\cdot 1_2 \\ 1\cdot 7_1 \\ 1\cdot 2_8 \\ 0\cdot 8_0 \\ \end{array}$	$5 \cdot 0_{7}$ $4 \cdot 6_{5}$ $4 \cdot 1_{9}$ $3 \cdot 5_{0}$ $3 \cdot 2_{0}$ $2 \cdot 8_{0}$ $2 \cdot 3_{8}$ $1 \cdot 9_{6}$ $1 \cdot 5_{5}$ $1 \cdot 1_{0}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \end{array}$	10·42 9·59 8·70 7·54 6·76 5·97 5·18 4·37 ₅ 3·56 ₅ 2·74 ₂	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21
P _θ P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀	Ru 7.3_{7} 6.6_{9} 5.9_{6} 5.0_{2} 4.3_{8} 3.7_{5} 3.1_{0} 2.4_{8} 1.8_{5} 1.2_{5} 0.91	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \end{array}$	5.8_{0} 5.1_{5} 4.5_{0} 3.7_{2} 3.2_{3} 2.7_{5} 1.7_{8} 1.3_{2} 0.91 0.72	$\begin{array}{c} 4 \cdot 7_{8} \\ 4 \cdot 3_{6} \\ 3 \cdot 9_{0} \\ 3 \cdot 3_{1} \\ 2 \cdot 9_{2} \\ 2 \cdot 1_{2} \\ 1 \cdot 7_{1} \\ 1 \cdot 2_{8} \\ 0 \cdot 69_{5} \end{array}$	$\begin{array}{c} 5 \cdot 0_7 \\ 4 \cdot 6_5 \\ 4 \cdot 1_9 \\ 3 \cdot 5_0 \\ 3 \cdot 2_0 \\ 2 \cdot 3_8 \\ 1 \cdot 9_6 \\ 1 \cdot 5_5 \\ 1 \cdot 1_0 \\ 0 \cdot 90 \end{array}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 75 \end{array}$	$\begin{array}{c} \text{Pd} \\ 10.5_5 \\ 9.7_0 \\ 8.8_2 \\ 7.6_6 \\ 6.9_0 \\ 6.0_6 \\ 5.1_9 \\ 4.3_3 \\ 3.4_6 \\ 2.6_0 \\ 2.1_7 \end{array}$	10·42 9·59 8·70 7·54 6·76 5·97 5·18 4·37 ₅ 3·56 ₅ 2·74 ₂ 2·32 ₆	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·35-	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀	Ru 7.3_7 6.6_9 5.9_6 5.0_2 4.3_8 3.7_5 3.1_0 2.4_8 1.8_5 1.2_5 0.91 0.64	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \end{array}$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \end{array}$	$\begin{array}{c} 4 \cdot 7_{8} \\ 4 \cdot 3_{6} \\ 3 \cdot 9_{0} \\ 3 \cdot 3_{1} \\ 2 \cdot 9_{2} \\ 2 \cdot 5_{2} \\ 1 \cdot 7_{1} \\ 1 \cdot 2_{8} \\ 0 \cdot 69_{5} \\ 0 \cdot 51 \end{array}$	$\begin{array}{c} 5 \cdot 0_7 \\ 4 \cdot 6_5 \\ 4 \cdot 1_9 \\ 3 \cdot 5_0 \\ 3 \cdot 2_0 \\ 2 \cdot 8_0 \\ 2 \cdot 3_8 \\ 1 \cdot 9_6 \\ 1 \cdot 5_5 \\ 1 \cdot 1_0 \\ 0 \cdot 90 \\ 0 \cdot 72 \end{array}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 7_5 \\ 0 \cdot 5_5 \end{array}$	Pd 10.5_5 9.7_0 8.8_2 7.6_6 6.9_0 6.0_6 5.1_9 4.3_3 3.4_6 2.6_0 2.1_7 1.7_2	$\begin{array}{c} 10.42 \\ 9.59 \\ 8.70 \\ 7.54 \\ 6.76 \\ 5.97 \\ 5.18 \\ 4.37_{5} \\ 3.56_{5} \\ 2.74_{2} \\ 2.32_{6} \\ 1.90_{9} \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀	1.61 1.47 1.34 1.16 1.04 0.92 0.79_5 0.67_5 0.42_0 0.35_5 0.29_0	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·46 ₀	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85
P _θ P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀	Ru 7·3 ₇ 6·6 ₉ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \end{array}$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \end{array}$	$\begin{array}{c} 4 \cdot 7_{8} \\ 4 \cdot 3_{6} \\ 3 \cdot 9_{0} \\ 3 \cdot 3_{1} \\ 2 \cdot 9_{2} \\ 2 \cdot 5_{2} \\ 2 \cdot 1_{2} \\ 1 \cdot 7_{1} \\ 1 \cdot 2_{8} \\ 0 \cdot 69_{5} \\ 0 \cdot 51 \\ 0 \cdot 34 \end{array}$	$\begin{array}{c} 5 \cdot 0_7 \\ 4 \cdot 6_5 \\ 4 \cdot 1_9 \\ 3 \cdot 5_0 \\ 3 \cdot 2_0 \\ 2 \cdot 8_0 \\ 2 \cdot 3_8 \\ 1 \cdot 9_6 \\ 1 \cdot 5_5 \\ 1 \cdot 1_0 \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \end{array}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 75 \\ 0 \cdot 55 \\ 0 \cdot 38 \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 3_0 \end{array}$	10·42 9·59 8·70 7·54 6·76 5·97 5·18 4·37 ₅ 3·56 ₅ 2·74 ₂ 2·32 ₆ 1·90 ₉ 1·49 ₇	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀ 0·21 ₅	$\begin{array}{c} 1.61 \\ 1.47 \\ 1.34 \\ 1.16 \\ 1.04 \\ 0.92 \\ 0.79_5 \\ 0.67_5 \\ 0.42_0 \\ 0.35_5 \\ 0.29_0 \\ 0.23_0 \end{array}$	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ \end{array}$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_4 \end{array}$	$\begin{array}{c} 5 \cdot 0_7 \\ 4 \cdot 6_5 \\ 4 \cdot 1_9 \\ 3 \cdot 5_0 \\ 3 \cdot 2_0 \\ 2 \cdot 8_0 \\ 2 \cdot 3_8 \\ 1 \cdot 9_6 \\ 1 \cdot 5_5 \\ 1 \cdot 1_0 \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 35 \end{array}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 75 \\ 0 \cdot 55 \\ 0 \cdot 38 \\ 0 \cdot 24_5 \end{array}$	Pd 10.5_5 9.7_0 8.8_2 7.6_6 6.9_0 6.0_6 5.1_9 4.3_3 3.4_6 2.6_0 2.1_7 1.7_2 1.30 0.92	10·42 9·59 8·70 7·54 6·76 5·97 5·18 4·37 ₅ 3·56 ₅ 2·74 ₂ 2·32 ₆ 1·90 ₉ 1·49 ₇ 1·09 ₄	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₁₀₀ P ₁₉₀ P ₈₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \end{array}$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_4 \end{array}$	$\begin{array}{c} 4 \cdot 7_{8} \\ 4 \cdot 3_{6} \\ 3 \cdot 9_{0} \\ 3 \cdot 3_{1} \\ 2 \cdot 9_{2} \\ 2 \cdot 5_{2} \\ 2 \cdot 1_{2} \\ 1 \cdot 7_{1} \\ 1 \cdot 2_{8} \\ 0 \cdot 8_{9} \\ 0 \cdot 69_{5} \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 10_{5} \end{array}$	$\begin{array}{c} 5 \cdot 0_7 \\ 4 \cdot 6_5 \\ 4 \cdot 1_9 \\ 3 \cdot 5_0 \\ 3 \cdot 2_0 \\ 2 \cdot 8_0 \\ 2 \cdot 3_8 \\ 1 \cdot 9_6 \\ 1 \cdot 5_5 \\ 1 \cdot 1_0 \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ \end{array}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 75 \\ 0 \cdot 55 \\ 0 \cdot 38 \\ 0 \cdot 24_5 \\ 0 \cdot 15 \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_5 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 7_2 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \end{array}$	$\begin{array}{c} 10.42 \\ 9.59 \\ 8.70 \\ 7.54 \\ 6.76 \\ 5.97 \\ 5.18 \\ 4.375 \\ 3.565 \\ 2.742 \\ 2.326 \\ 1.909 \\ 1.497 \\ 1.094 \\ 0.719 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050	$\begin{array}{c} 1.61 \\ 1.47 \\ 1.34 \\ 1.16 \\ 1.04 \\ 0.92 \\ 0.79_5 \\ 0.67_5 \\ 0.54_5 \\ 0.42_0 \\ 0.35_5 \\ 0.29_0 \\ 0.23_0 \\ 0.17 \\ 0.11 \\ \end{array}$	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 93_8$	$9 \cdot 1_3$ $8 \cdot 3_5$ $7 \cdot 5_0$ $6 \cdot 4_5$ $5 \cdot 7_0$ $4 \cdot 2_2$ $3 \cdot 50$ $2 \cdot 70$ $1 \cdot 90$ $1 \cdot 50$ $1 \cdot 10$ $0 \cdot 79$ $0 \cdot 26$ $0 \cdot 11$	5.8_{0} 5.1_{5} 4.5_{0} 3.7_{2} 3.2_{3} 2.7_{5} 2.2_{6} 1.7_{8} 1.3_{2} 0.91 0.72 0.54 0.38 0.25 0.14_{5} 0.07_{7}	$\begin{array}{c} 4 \cdot 7_{8} \\ 4 \cdot 3_{6} \\ 3 \cdot 9_{0} \\ 3 \cdot 3_{1} \\ 2 \cdot 9_{2} \\ 2 \cdot 5_{2} \\ 2 \cdot 1_{2} \\ 1 \cdot 7_{1} \\ 1 \cdot 2_{8} \\ 0 \cdot 69_{9} \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 10_{5} \\ 0 \cdot 043 \end{array}$	$\begin{array}{c} 5 \cdot 0_7 \\ 4 \cdot 6_5 \\ 4 \cdot 1_9 \\ 3 \cdot 5_0 \\ 3 \cdot 2_0 \\ 2 \cdot 8_0 \\ 2 \cdot 3_8 \\ 1 \cdot 9_6 \\ 1 \cdot 5_5 \\ 1 \cdot 1_0 \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ \end{array}$	Ni 7·0 ₄ 6·2 ₀ 5·4 ₀ 5·4 ₀ 4·3 ₆ 3·7 ₂ 3·1 ₀ 2·5 ₂ 1·9 ₇ 1·4 ₆ 1·0 ₀ 0·75 0·38 0·24 ₅ 0·15 0·07 ₇	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58	10·42 9·59 8·70 7·54 6·76 5·97 5·18 4·37 ₅ 3·56 ₅ 2·74 ₂ 2·32 ₆ 1·90 ₉ 1·49 ₇ 1·09 ₄ 0·719 0·396	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·42 ₅ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·12	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34
P _θ P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 03_8$ $0 \cdot 01_0$	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \end{array}$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.02_7 \end{array}$	$\begin{array}{c} 4 \cdot 7_{8} \\ 4 \cdot 3_{6} \\ 3 \cdot 9_{0} \\ 3 \cdot 3_{1} \\ 2 \cdot 9_{2} \\ 2 \cdot 5_{2} \\ 2 \cdot 1_{2} \\ 1 \cdot 7_{1} \\ 1 \cdot 2_{8} \\ 0 \cdot 69_{5} \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_{4} \\ 0 \cdot 10_{5} \\ 0 \cdot 043 \\ 0 \cdot 011_{5} \end{array}$	$\begin{array}{c} 5 \cdot 0_7 \\ 4 \cdot 6_5 \\ 4 \cdot 1_9 \\ 3 \cdot 5_0 \\ 3 \cdot 2_0 \\ 2 \cdot 8_0 \\ 2 \cdot 3_8 \\ 1 \cdot 9_6 \\ 1 \cdot 5_5 \\ 1 \cdot 1_0 \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_2 \end{array}$	Ni $7 \cdot 0_4$ $6 \cdot 2_0$ $5 \cdot 4_0$ $4 \cdot 3_6$ $3 \cdot 7_2$ $3 \cdot 1_0$ $2 \cdot 5_2$ $1 \cdot 9_7$ $1 \cdot 4_6$ $1 \cdot 0_0$ $0 \cdot 7_5$ $0 \cdot 5_5$ $0 \cdot 3_8$ $0 \cdot 2_4 \cdot 5_5$ $0 \cdot 07_3$ $0 \cdot 03_0$	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58 0·32 0·13	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·063	$\begin{array}{c} 1.61 \\ 1.47 \\ 1.34 \\ 1.16 \\ 1.04 \\ 0.92 \\ 0.79_5 \\ 0.67_5 \\ 0.42_0 \\ 0.35_5 \\ 0.29_0 \\ 0.23_0 \\ 0.17 \\ 0.11 \\ 0.058 \\ 0.020 \\ \end{array}$	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·38 0·29 0·20 0·12 0·050	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07-
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₄₀ P ₃₀ P ₂₅	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 93_8$	$9 \cdot 1_3$ $8 \cdot 3_5$ $7 \cdot 5_0$ $6 \cdot 4_5$ $5 \cdot 7_0$ $4 \cdot 2_2$ $3 \cdot 50$ $2 \cdot 70$ $1 \cdot 90$ $1 \cdot 50$ $1 \cdot 10$ $0 \cdot 79$ $0 \cdot 26$ $0 \cdot 11$	5.8_0 5.1_5 4.5_0 3.7_2 3.2_3 2.7_5 2.2_6 1.7_8 1.3_2 0.91 0.72 0.54 0.38 0.25 0.14_5 0.07_2 0.02_7 0.01_4	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ \theta \cdot 011_5 \\ 0 \cdot 004_0 \end{array}$	5.0_{7} 4.6_{5} 4.1_{9} 3.5_{0} 3.2_{0} 2.8_{0} 2.3_{8} 1.9_{8} 1.5_{5} 1.1_{0} 0.90 0.72 0.53 0.20 0.10 0.03_{2} 0.014_{5}	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 75 \\ 0 \cdot 55 \\ 0 \cdot 38 \\ 0 \cdot 24_5 \\ 0 \cdot 15 \\ 0 \cdot 07_3 \\ 0 \cdot 03_0 \\ 0 \cdot 017 \end{array}$	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·30 0·92 0·58 0·32 0·13	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 66_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 0837 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·063 0·0025	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·17 0·11 0·058 0·020 0·010	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·050 0·027	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₂₀ P ₁₈₀ P ₁₆₀ P ₁₆₀ P ₁₄₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₃₀ P ₂₅ P ₂₀	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 03_8$ $0 \cdot 01_0$	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \end{array}$	5.8_0 5.1_5 4.5_0 3.7_2 3.2_3 2.7_5 2.2_6 1.7_8 1.3_2 0.91 0.72 0.54 0.38 0.25 0.14_5 0.07_2 0.01_4 0.006_6	$\begin{array}{c} 4 \cdot 7_{8} \\ 4 \cdot 3_{6} \\ 3 \cdot 9_{0} \\ 3 \cdot 3_{1} \\ 2 \cdot 9_{2} \\ 2 \cdot 5_{2} \\ 2 \cdot 1_{2} \\ 1 \cdot 7_{1} \\ 1 \cdot 2_{8} \\ 0 \cdot 69_{5} \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_{4} \\ 0 \cdot 10_{5} \\ 0 \cdot 043 \\ 0 \cdot 011_{5} \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \end{array}$	$\begin{array}{c} \text{Ni} \\ \textbf{7.04} \\ \textbf{6.2}_0 \\ \textbf{5.4}_0 \\ \textbf{4.3}_6 \\ \textbf{3.72} \\ \textbf{3.10} \\ \textbf{2.52} \\ \textbf{1.97} \\ \textbf{1.46} \\ \textbf{1.00} \\ \textbf{0.75} \\ \textbf{0.55} \\ \textbf{0.38} \\ \textbf{0.24}_5 \\ \textbf{0.15} \\ \textbf{0.073} \\ \textbf{0.030} \\ \textbf{0.030} \\ \textbf{0.017} \\ \textbf{0.009} \end{array}$	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·3 ₀ 0·92 0·58 0·32 0·13 0·074 0·036	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·022 0·0063 0·0025 0·0008	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·070 0·0038	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·027 0·0125	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₁₀₀ P ₁₀₀ P ₉₀ P ₈₀ P ₆₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 03_8$ $0 \cdot 01_0$	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \end{array}$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.002_7 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ \theta \cdot 011_5 \\ 0 \cdot 004_0 \end{array}$	5.0_{7} 4.6_{5} 4.1_{9} 3.5_{0} 3.2_{0} 2.8_{0} 2.3_{8} 1.9_{8} 1.5_{5} 1.1_{0} 0.90 0.72 0.53 0.20 0.10 0.03_{2} 0.014_{5}	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 75 \\ 0 \cdot 55 \\ 0 \cdot 38 \\ 0 \cdot 24_5 \\ 0 \cdot 15 \\ 0 \cdot 07_3 \\ 0 \cdot 03_0 \\ 0 \cdot 017 \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 7_2 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \\ 0 \cdot 32 \\ 0 \cdot 13 \\ 0 \cdot 074 \\ 0 \cdot 036 \\ 0 \cdot 014_5 \end{array}$	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·063 0·0025	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·0038 0·0011	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·050 0·027 0·0125 0·0037	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·005 ₆
P _θ P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅ P ₁₀	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 03_8$ $0 \cdot 01_0$	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \end{array}$	5.8_0 5.1_5 4.5_0 3.7_2 3.2_3 2.7_5 2.2_6 1.7_8 1.3_2 0.91 0.72 0.54 0.38 0.25 0.14_5 0.07_2 0.01_4 0.006_6	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ \theta \cdot 011_5 \\ 0 \cdot 004_0 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \end{array}$	$\begin{array}{c} \text{Ni} \\ \textbf{7.04} \\ \textbf{6.2}_0 \\ \textbf{5.4}_0 \\ \textbf{4.3}_6 \\ \textbf{3.72} \\ \textbf{3.10} \\ \textbf{2.52} \\ \textbf{1.97} \\ \textbf{1.46} \\ \textbf{1.00} \\ \textbf{0.75} \\ \textbf{0.55} \\ \textbf{0.38} \\ \textbf{0.24}_5 \\ \textbf{0.15} \\ \textbf{0.073} \\ \textbf{0.030} \\ \textbf{0.030} \\ \textbf{0.017} \\ \textbf{0.009} \end{array}$	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·3 ₀ 0·92 0·58 0·32 0·13 0·074 0·036	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·022 0·0063 0·0025 0·0008	$\begin{array}{c} 1 \cdot 61 \\ 1 \cdot 47 \\ 1 \cdot 34 \\ 1 \cdot 16 \\ 1 \cdot 04 \\ 0 \cdot 92 \\ 0 \cdot 79_5 \\ 0 \cdot 67_5 \\ 0 \cdot 54_5 \\ 0 \cdot 42_0 \\ 0 \cdot 35_5 \\ 0 \cdot 29_0 \\ 0 \cdot 23_0 \\ 0 \cdot 17 \\ 0 \cdot 11 \\ 0 \cdot 058 \\ 0 \cdot 020 \\ 0 \cdot 010 \\ 0 \cdot 0038 \\ 0 \cdot 0011 \\ 0 \cdot 0002 \end{array}$	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·050 0·027 0·0125 0·0037 0·0006	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·005 ₆ 0·0008 _e
P _θ P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₈₀ P ₁₄₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅ P ₁₀ P ₈	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 03_8$ $0 \cdot 01_0$	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \\ 0 \cdot 01_2 \\ \dots \\ $	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.002_7 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \end{array}$	Ni 7·04 6·20 5·40 4·36 3·72 3·10 2·52 1·97 1·46 1·00 0·75 0·38 0·24 0·07 0·07 0·009 0·004	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 7_2 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \\ 0 \cdot 32 \\ 0 \cdot 13 \\ 0 \cdot 074 \\ 0 \cdot 036 \\ 0 \cdot 014_5 \end{array}$	10·42 9·59 8·70 7·54 6·76 5·97 5·18 4·37 ₅ 3·56 ₅ 2·74 ₂ 2·32 ₆ 1·90 ₉ 1·49 ₇ 1·09 ₄ 0·719 0·396 0·160 0·0837 0·0016 0·0029 0·0014 0·0006	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·022 0·0063 0·0025 0·0008	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·0038 0·0011 0·0002	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·050 0·027 0·0125 0·0037	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·005 ₆ 0·0006 ₅ 0·00002 ₇
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₂₀ P ₁₈₀ P ₁₆₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅ P ₁₀ P ₈ P ₆	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 03_8$ $0 \cdot 01_0$	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \end{array}$	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.002_7 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ \theta \cdot 011_5 \\ 0 \cdot 004_0 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \end{array}$	$\begin{array}{c} \text{Ni} \\ \textbf{7.04} \\ \textbf{6.2}_0 \\ \textbf{5.4}_0 \\ \textbf{4.3}_6 \\ \textbf{3.72} \\ \textbf{3.10} \\ \textbf{2.52} \\ \textbf{1.97} \\ \textbf{1.46} \\ \textbf{1.00} \\ \textbf{0.75} \\ \textbf{0.55} \\ \textbf{0.38} \\ \textbf{0.24}_5 \\ \textbf{0.15} \\ \textbf{0.073} \\ \textbf{0.030} \\ \textbf{0.030} \\ \textbf{0.017} \\ \textbf{0.009} \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 7_2 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \\ 0 \cdot 32 \\ 0 \cdot 13 \\ 0 \cdot 074 \\ 0 \cdot 036 \\ 0 \cdot 014_5 \end{array}$	10·42 9·59 8·70 7·54 6·76 5·97 5·18 4·37 ₅ 3·56 ₅ 2·74 ₂ 2·32 ₆ 1·90 ₉ 1·49 ₇ 1·09 ₄ 0·719 0·396 0·160 0·0837 0·0016 0·0029 0·0014 0·0006	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·022 0·0063 0·0025 0·0008	$\begin{array}{c} 1 \cdot 61 \\ 1 \cdot 47 \\ 1 \cdot 34 \\ 1 \cdot 16 \\ 1 \cdot 04 \\ 0 \cdot 92 \\ 0 \cdot 79_5 \\ 0 \cdot 67_5 \\ 0 \cdot 54_5 \\ 0 \cdot 42_0 \\ 0 \cdot 35_5 \\ 0 \cdot 29_0 \\ 0 \cdot 23_0 \\ 0 \cdot 17 \\ 0 \cdot 11 \\ 0 \cdot 058 \\ 0 \cdot 020 \\ 0 \cdot 010 \\ 0 \cdot 0038 \\ 0 \cdot 0011 \\ 0 \cdot 0002 \end{array}$	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·050 0·027 0·0125 0·0037 0·0006	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·008 ₆ 0·0008 ₅ 0·0002 ₅ 0·00004 ₈
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₂₀ P ₁₈₀ P ₁₆₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅ P ₁₀ P ₈ P ₆	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 6·4 ₅ 5·7 ₀ 1·2 ₀ 1·	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.011_1 \\ \dots \\ $	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \end{array}$	Ni 7·04 6·20 5·40 4·36 3·72 3·10 2·62 1·97 1·46 1·00 0·75 0·38 0·245 0·15 0·073 0·030 0·017 0·009 0·0045	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 00006_5 \\ 0\cdot 0002_4 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0001 — —	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·29 ₀ 0·23 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·0002 ₅ 0·00002 ₅ 0·00004 ₃ 0·00003 ₆
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅ P ₁₀ P ₈ P ₆	Ru $7 \cdot 3_7$ $6 \cdot 6_9$ $5 \cdot 9_6$ $5 \cdot 0_2$ $4 \cdot 3_8$ $3 \cdot 7_5$ $3 \cdot 1_0$ $2 \cdot 4_8$ $1 \cdot 8_5$ $1 \cdot 2_5$ $0 \cdot 91$ $0 \cdot 64$ $0 \cdot 43$ $0 \cdot 24$ $0 \cdot 10_5$ $0 \cdot 03_8$ $0 \cdot 01_0$	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \\ 0 \cdot 01_2 \\ \dots \\ $	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.002_7 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5·07 4·65 4·19 3·50 3·20 2·80 2·80 1·55 1·10 0·90 0·72 0·53 0·20 0·10 0·005 0·0013 	Ni 7·04 6·20 5·40 4·36 3·72 3·10 2·52 1·97 1·46 1·00 0·75 0·38 0·24 0·07 0·07 0·009 0·004	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 — — — 295	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0002_9 \\ 0\cdot 001_6 \\ 0\cdot 0002_4 \\ 225 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·022 0·0063 0·0025 0·0008	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 220	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·050 0·027 0·0125 0·0037 0·0006 185 1	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·00008 ₅ 0·00008 ₅ 0·00003 ₆ 60
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅ P ₁₀ P ₈ P ₆ P ₄ P ₆ P ₄ P ₆ P ₆ P ₄ P ₆ P ₆ P ₄ P ₆ P ₆ P ₇ P ₆ P ₈ P ₆ P ₁ P ₈ P ₆ P ₄ P ₆ P ₄ P ₆ P ₆ P ₇ P ₆ P ₈ P ₈ P ₆ P ₈	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 5·0 ₀ 4·2 ₂ 3·56 2·70 1·90 1·50 0·26 0·11 0·02 ₈ 0·01 ₂ 400 13	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.02_7 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.001_1 \\ \dots \\ 380 \\ 8.8 \end{array}$	$\begin{array}{c} 4\cdot 7_8 \\ 4\cdot 3_6 \\ 3\cdot 9_0 \\ 3\cdot 3_1 \\ 2\cdot 9_2 \\ 2\cdot 5_2 \\ 2\cdot 1_2 \\ 1\cdot 7_1 \\ 1\cdot 2_8 \\ 0\cdot 8_9 \\ 0\cdot 69_5 \\ 0\cdot 51 \\ 0\cdot 043 \\ 0\cdot 10_5 \\ 0\cdot 043 \\ 0\cdot 010_5 \\ 0\cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5\cdot 8_6 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 8_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{8} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ $	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 7_5 \\ 0 \cdot 5_5 \\ 0 \cdot 3_8 \\ 0 \cdot 24_5 \\ 0 \cdot 15 \\ 0 \cdot 07_3 \\ 0 \cdot 03_0 \\ 0 \cdot 017 \\ 0 \cdot 009 \\ 0 \cdot 004_5 \\ \dots \\ 390 \\ 11 \cdot 2 \\ \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \\ 0 \cdot 32 \\ 0 \cdot 13 \\ 0 \cdot 074 \\ 0 \cdot 036 \\ 0 \cdot 014_5 \\ 0 \cdot 004 \\$	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 90_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0006_5 \\ 0\cdot 0002_4 \\ 225 \\ 7\cdot 7_3 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0008 0·0001 ₇	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·29 ₀ 0·23 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·0002 ₅ 0·00002 ₅ 0·00004 ₃ 0·00003 ₆
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₂₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₁₅ P ₁₀ P ₈ P ₆ P ₄ P ₆ P ₄ P ₆ P ₄ P ₆ P ₄ P ₆ P ₆ P ₄ P ₆ P ₄ P ₆ P ₆ P ₆ P ₇ P ₆ P ₈ P ₆ P ₉ P ₁₅ P ₁₀ P ₈ P ₁₀ P ₈ P ₁₀ P ₁	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₁₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 5·0 ₀ 4·2 ₂ 3·50 2·70 1·90 1·50 1·10 0·79 0·50 0·26 0·11 0·02 ₈ 0·01 ₂ 400	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.01_1 \\ \dots \\ 380 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5·07 4·65 4·19 3·50 3·20 2·80 2·80 1·55 1·10 0·90 0·72 0·53 0·20 0·10 0·005 0·0013 	Ni 7·04 6·20 5·40 4·36 3·72 3·10 2·552 1·97 1·46 1·00 0·75 0·55 0·38 0·245 0·155 0·073 0·030 0·017 0·009 0·0045 390	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 — — — 295	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0002_9 \\ 0\cdot 001_6 \\ 0\cdot 0002_4 \\ 225 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0008 0·0001 ₇	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 220	Au 2·20 2·01 1·83 1·60 1·44 1·28 1·12 0·95 ₅ 0·79 ₀ 0·63 ₀ 0·54 ₅ 0·46 ₀ 0·38 0·29 0·20 0·12 0·050 0·027 0·0125 0·0037 0·0006 185 1	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·00008 ₅ 0·00008 ₅ 0·00003 ₆ 60
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀₀ P ₂₀₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₆₀ P ₆₀ P ₆₀ P ₇₀ P ₁₅ P ₁₀ P ₁₅ P ₁₀ P ₈ P ₆ P ₄ P ₆ P ₄ P ₆ P ₄ P ₆ P ₆ P ₆ P ₄ P ₆	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 5·0 ₀ 4·2 ₂ 3·56 2·70 1·90 1·50 0·26 0·11 0·02 ₈ 0·01 ₂ 400 13	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.01_1 \\ \dots \\ 380 \\ 8.8 \\ 0.234 \\ \end{array}$	$\begin{array}{c} 4\cdot 7_8 \\ 4\cdot 3_6 \\ 3\cdot 9_0 \\ 3\cdot 3_1 \\ 2\cdot 9_2 \\ 2\cdot 5_2 \\ 2\cdot 1_2 \\ 1\cdot 7_1 \\ 1\cdot 2_8 \\ 0\cdot 8_9 \\ 0\cdot 69_5 \\ 0\cdot 51 \\ 0\cdot 043 \\ 0\cdot 10_5 \\ 0\cdot 043 \\ 0\cdot 010_5 \\ 0\cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5\cdot 8_6 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 8_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{8} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ $	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 7_5 \\ 0 \cdot 5_5 \\ 0 \cdot 3_8 \\ 0 \cdot 24_5 \\ 0 \cdot 15 \\ 0 \cdot 07_3 \\ 0 \cdot 03_0 \\ 0 \cdot 017 \\ 0 \cdot 009 \\ 0 \cdot 004_5 \\ \dots \\ 390 \\ 11 \cdot 2 \\ \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \\ 0 \cdot 32 \\ 0 \cdot 13 \\ 0 \cdot 074 \\ 0 \cdot 036 \\ 0 \cdot 014_5 \\ 0 \cdot 004 \\$	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 90_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0006_5 \\ 0\cdot 0002_4 \\ 225 \\ 7\cdot 7_3 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0025 0·0008 0·0001 ₇ — — 310 1·80	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 — — 220 1·16	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1:32	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·005 ₆ 0·0008 ₅ 0·0008 ₅ 0·00003 ₆ 60 2·27
ρ _θ ρ ₂₉₅ ρ ₂₇₃ ρ ₂₅₀ ρ ₂₇₀ ρ ₂₈₀ ρ ₁₈₀ ρ ₁₆₀ ρ ₁	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_6 \\ 0 \cdot 01_2 \\ \dots \\ $	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.01_1 \\ \dots \\ 380 \\ 8.8 \\ 0.234 \\ \end{array}$	$\begin{array}{c} 4\cdot 7_8 \\ 4\cdot 3_6 \\ 3\cdot 9_0 \\ 3\cdot 3_1 \\ 2\cdot 9_2 \\ 2\cdot 5_2 \\ 2\cdot 1_2 \\ 1\cdot 7_1 \\ 1\cdot 2_8 \\ 0\cdot 8_9 \\ 0\cdot 69_5 \\ 0\cdot 51 \\ 0\cdot 043 \\ 0\cdot 10_5 \\ 0\cdot 043 \\ 0\cdot 010_5 \\ 0\cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5\cdot 8_6 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 8_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{8} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ $	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 7_5 \\ 0 \cdot 5_5 \\ 0 \cdot 3_8 \\ 0 \cdot 24_5 \\ 0 \cdot 15 \\ 0 \cdot 07_3 \\ 0 \cdot 03_0 \\ 0 \cdot 017 \\ 0 \cdot 009 \\ 0 \cdot 004_5 \\ \dots \\ 390 \\ 11 \cdot 2 \\ \end{array}$	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 7_2 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \\ 0 \cdot 32 \\ 0 \cdot 13 \\ 0 \cdot 074 \\ 0 \cdot 036 \\ 0 \cdot 014_5 \\ 0 \cdot 004 \\$	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 90_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0006_5 \\ 0\cdot 0002_4 \\ 225 \\ 7\cdot 7_3 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0025 0·0008 0·0001 ₇ — — 310 1·80	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 — — 220 1·16	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1:32 0:310	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·0008 ₅ 0·0002 ₅ 0·00004 ₃ 0·000003 ₆ 60 2·27 0·256
P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀₀ P ₂₀₀₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₆₀ P ₆₀ P ₆₀ P ₇₀ P ₁₅ P ₁₀ P ₁₅ P ₁₀ P ₈ P ₆ P ₄ P ₆ P ₄ P ₆ P ₄ P ₆ P ₆ P ₆ P ₄ P ₆	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 5·0 ₀ 4·2 ₂ 3·56 2·70 1·90 1·50 0·26 0·11 0·02 ₈ 0·01 ₂ 400 13	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.02_7 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.001_1 \\ \dots \\ 380 \\ 8.8 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5 \cdot 8_6 \\ 0 \cdot 292 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{10} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ \dots \\ 290 \\ 4 \cdot 9_{7} \\ 0 \cdot 294 \\ \end{array}$	Ni 7·04 6·20 5·40 4·36 3·72 3·10 2·52 1·97 1·46 1·00 0·75 0·38 0·245 0·15 0·073 0·030 0·017 0·009 0·0045 390 11·2 0·214	$\begin{array}{c} \text{Pd} \\ 10 \cdot 5_5 \\ 9 \cdot 7_0 \\ 8 \cdot 8_2 \\ 7 \cdot 6_6 \\ 6 \cdot 9_0 \\ 6 \cdot 0_6 \\ 5 \cdot 1_9 \\ 4 \cdot 3_3 \\ 3 \cdot 4_6 \\ 2 \cdot 6_0 \\ 2 \cdot 1_7 \\ 1 \cdot 30 \\ 0 \cdot 92 \\ 0 \cdot 58 \\ 0 \cdot 32 \\ 0 \cdot 13 \\ 0 \cdot 074 \\ 0 \cdot 036 \\ 0 \cdot 014_5 \\ 0 \cdot 004 \\$	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 00006_5 \\ 0\cdot 0002_2 \\ 225 \\ 7\cdot 7_3 \\ 0\cdot 301 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·002 0·0063 0·0025 0·0008 0·0001 ₇ 310 1·80	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 — — — 220 1·16 0·293	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1:32	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·005 ₆ 0·0008 ₅ 0·0008 ₅ 0·00003 ₆ 60 2·27
ρ _θ ρ ₂₉₅ ρ ₂₇₃ ρ ₂₅₀ ρ ₂₇₀ ρ ₂₈₀ ρ ₁₈₀ ρ ₁₆₀ ρ ₁	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 1	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \\ 0 \cdot 01_2 \\ \dots \\ $	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.01_1 \\ \dots \\ 380 \\ 8.8 \\ 0.234 \\ 0.05_5 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \\ \dots \\ 350 \\ 5 \cdot 8_6 \\ 0 \cdot 292 \\ 0 \cdot 058 \\ \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 8_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 104_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ \dots \\ 290 \\ 4 \cdot 9_{7} \\ 0 \cdot 294 \\ 0 \cdot 063 \end{array}$	Ni 7·04 6·26 5·40 4·36 3·72 3·10 2·52 1·97 1·46 1·00 0·75 0·55 0·38 0·245 0·073 0·017 0·009 0·0045 390 11·2 0·214 0·045	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 — — 295 10·5 ₅ 0·320 0·083 ₄	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0002_2 \\ 225 \\ 7\cdot 7_3 \\ 0\cdot 301 \\ 0\cdot 070 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0025 0·0008 0·0001 ₇ — — 310 1·80 0·289	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 — 220 1·16 0·293 0·066	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:955 0:790 0:630 0:545 0:460 0:38 0:29 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1 1:32 0:310 0:070	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·017 0·0000 ₅ 0·00000 ₅
P _θ P ₂₉₅ P ₂₇₃ P ₂₅₀ P ₂₂₀ P ₂₂₀ P ₁₈₀ P ₁₈₀ P ₁₆₀ P ₁₄₀ P ₁₀₀ P ₉₀ P ₈₀ P ₇₀ P ₆₀ P ₅₀ P ₄₀ P ₃₀ P ₂₅ P ₂₀ P ₁₅ P ₁₀ P ₈ P ₆ P ₄ P _D (°K) P _θ P _{0-2θ} P ₀	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_6 \\ 0 \cdot 01_2 \\ \dots \\ $	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.01_1 \\ \dots \\ 380 \\ 8.8 \\ 0.234 \\ \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5 \cdot 8_6 \\ 0 \cdot 292 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{10} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ \dots \\ 290 \\ 4 \cdot 9_{7} \\ 0 \cdot 294 \\ \end{array}$	Ni 7·04 6·20 5·40 4·36 3·72 3·10 2·52 1·97 1·46 1·00 0·75 0·38 0·245 0·15 0·073 0·030 0·017 0·009 0·0045 390 11·2 0·214	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·3 ₀ 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 295 10·5 ₅ 0·320	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 00006_5 \\ 0\cdot 0002_2 \\ 225 \\ 7\cdot 7_3 \\ 0\cdot 301 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·002 0·0063 0·0025 0·0008 0·0001 ₇ 310 1·80	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·42 ₀ 0·35 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 — — — 220 1·16 0·293	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1:32 0:310	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·0008 ₅ 0·0002 ₅ 0·00004 ₃ 0·000003 ₆ 60 2·27 0·256
$\begin{array}{ c c c c c }\hline \rho_{\theta} \\ \hline \rho_{295} \\ \rho_{273} \\ \rho_{250} \\ \rho_{220} \\ \rho_{200} \\ \rho_{180} \\ \rho_{160} \\ \rho_{140} \\ \rho_{120} \\ \rho_{90} \\ \rho_{80} \\ \rho_{70} \\ \rho_{60} \\ \rho_{50} \\ \rho_{40} \\ \rho_{25} \\ \rho_{20} \\ \rho_{15} \\ \rho_{10} \\ \rho_{8} \\ \rho_{6} \\ \rho_{4} \\ \theta_{D} \\ (^{\circ}K) \\ \rho_{\theta} \\ \hline \rho_{0.2\theta} \\ \rho_{\theta} \\ \hline \rho_{0.2\theta} \\ \hline \rho_{\theta} \\ \hline \rho_{0.1\theta} \\ \hline \rho_{\theta} \\ \hline \rho_{0.1\theta} \\ \hline \rho_{\theta} $	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14 0·317 0·09 ₀	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 5·0 ₀ 4·2 ₂ 3·50 2·70 1·90 1·50 0·26 0·11 0·02 ₈ 0·01 ₂ 400 13 0·325 0·08 ₅	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.002_7 \\ 0.001_4 \\ 0.006_6 \\ 0.002_7 \\ 0.001_1 \\ \\ \\ \\ \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5 \cdot 8_6 \\ 0 \cdot 292 \\ 0 \cdot 058 \\ 0 \cdot 0040 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 8_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{8} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ 290 \\ 4 \cdot 9_{7} \\ 0 \cdot 294 \\ 0 \cdot 063 \\ 0 \cdot 0056 \end{array}$	Ni 7·0 ₄ 6·2 ₀ 5·4 ₀ 4·3 ₆ 3·7 ₂ 3·1 ₀ 2·5 ₂ 1·9 ₇ 1·4 ₈ 1·0 ₀ 0·75 0·55 0·38 0·24 ₅ 0·15 0·07 ₃ 0·017 0·009 0·004 ₅ 390 11·2 0·214 0·045	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 — — 295 10·5 ₅ 0·320 0·083 ₄ 0·0117	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0006_5 \\ 0\cdot 0002_4 \\ 225 \\ 7\cdot 7_3 \\ 0\cdot 301 \\ 0\cdot 070 \\ 0\cdot 0074 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0001 — — 310 1·80 0·289 0·058	$\begin{array}{c} 1 \cdot 61 \\ 1 \cdot 47 \\ 1 \cdot 34 \\ 1 \cdot 16 \\ 1 \cdot 04 \\ 0 \cdot 92 \\ 0 \cdot 79_5 \\ 0 \cdot 67_5 \\ 0 \cdot 54_5 \\ 0 \cdot 23_0 \\ 0 \cdot 35_5 \\ 0 \cdot 29_0 \\ 0 \cdot 23_0 \\ 0 \cdot 17 \\ 0 \cdot 11 \\ 0 \cdot 058 \\ 0 \cdot 020 \\ 0 \cdot 010 \\ 0 \cdot 0038 \\ 0 \cdot 0011 \\ 0 \cdot 0002 \\$	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1:32 0:310 0:070 0:007 ₀	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·005 ₆ 0·0008 ₅ 0·0002 ₅ 0·00003 ₆ 0 2·27 0·256 0·042 0·003 ₂
$\begin{array}{c} \rho_{\theta} \\ \rho_{295} \\ \rho_{273} \\ \rho_{250} \\ \rho_{220} \\ \rho_{200} \\ \rho_{180} \\ \rho_{160} \\ \rho_{140} \\ \rho_{120} \\ \rho_{90} \\ \rho_{80} \\ \rho_{70} \\ \rho_{60} \\ \rho_{50} \\ \rho_{40} \\ \rho_{30} \\ \rho_{25} \\ \rho_{20} \\ \rho_{15} \\ \rho_{10} \\ \rho_{\theta} \\ \rho_{0} \\ \rho_{\theta} \\ \rho_$	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 1	$\begin{array}{c} 9 \cdot 1_3 \\ 8 \cdot 3_5 \\ 7 \cdot 5_0 \\ 6 \cdot 4_5 \\ 5 \cdot 7_0 \\ 5 \cdot 0_0 \\ 4 \cdot 2_2 \\ 3 \cdot 50 \\ 2 \cdot 70 \\ 1 \cdot 90 \\ 1 \cdot 50 \\ 1 \cdot 10 \\ 0 \cdot 79 \\ 0 \cdot 50 \\ 0 \cdot 26 \\ 0 \cdot 11 \\ 0 \cdot 02_8 \\ 0 \cdot 01_2 \\ \dots \\ $	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.07_2 \\ 0.01_4 \\ 0.006_6 \\ 0.002_7 \\ 0.01_1 \\ \dots \\ 380 \\ 8.8 \\ 0.234 \\ 0.05_5 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 34 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \\ \dots \\ 350 \\ 5 \cdot 8_6 \\ 0 \cdot 292 \\ 0 \cdot 058 \\ \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 8_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{6} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 104_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ \dots \\ 290 \\ 4 \cdot 9_{7} \\ 0 \cdot 294 \\ 0 \cdot 063 \end{array}$	Ni 7·04 6·26 5·40 4·36 3·72 3·10 2·52 1·97 1·46 1·00 0·75 0·55 0·38 0·245 0·073 0·017 0·009 0·0045 390 11·2 0·214 0·045	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 — — 295 10·5 ₅ 0·320 0·083 ₄	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0002_2 \\ 225 \\ 7\cdot 7_3 \\ 0\cdot 301 \\ 0\cdot 070 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·0063 0·0025 0·0008 0·0001 ₇ — — 310 1·80 0·289	1·61 1·47 1·34 1·16 1·04 0·92 0·79 ₅ 0·67 ₅ 0·54 ₅ 0·29 ₀ 0·23 ₀ 0·17 0·11 0·058 0·020 0·010 0·0038 0·0011 0·0002 — 220 1·16 0·293 0·066	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:955 0:790 0:630 0:545 0:460 0:38 0:29 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1 1:32 0:310 0:070	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·017 0·0000 ₅ 0·00000 ₅
$\begin{array}{c} \rho_{\theta} \\ \rho_{295} \\ \rho_{273} \\ \rho_{250} \\ \rho_{220} \\ \rho_{200} \\ \rho_{180} \\ \rho_{160} \\ \rho_{140} \\ \rho_{120} \\ \rho_{90} \\ \rho_{80} \\ \rho_{70} \\ \rho_{60} \\ \rho_{50} \\ \rho_{40} \\ \rho_{30} \\ \rho_{25} \\ \rho_{20} \\ \rho_{15} \\ \rho_{10} \\ \rho_{\theta} \\ \rho_$	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14 0·317 0·09 ₀	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 5·0 ₀ 4·2 ₂ 3·50 2·70 1·90 1·50 0·26 0·11 0·02 ₈ 0·01 ₂ 400 13 0·325 0·08 ₅	$\begin{array}{c} 5 \cdot 8_0 \\ 5 \cdot 1_5 \\ 4 \cdot 5_0 \\ 3 \cdot 7_2 \\ 3 \cdot 2_3 \\ 2 \cdot 7_5 \\ 2 \cdot 2_6 \\ 1 \cdot 7_8 \\ 1 \cdot 3_2 \\ 0 \cdot 91 \\ 0 \cdot 72 \\ 0 \cdot 54 \\ 0 \cdot 91 \\ 0 \cdot 72 \\ 0 \cdot 14_5 \\ 0 \cdot 007_2 \\ 0 \cdot 01_4 \\ 0 \cdot 002_7 \\ 0 \cdot 01_4 \\ 0 \cdot 002_7 \\ 0 \cdot 001_1 \\ \dots \\ 380 \\ 8 \cdot 8 \\ 0 \cdot 234 \\ 0 \cdot 05_5 \\ 0 \cdot 0068 \\ 0 \cdot 002 \end{array}$	$\begin{array}{c} 4 \cdot 7_8 \\ 4 \cdot 3_6 \\ 3 \cdot 9_0 \\ 3 \cdot 3_1 \\ 2 \cdot 9_2 \\ 2 \cdot 5_2 \\ 2 \cdot 1_2 \\ 1 \cdot 7_1 \\ 1 \cdot 2_8 \\ 0 \cdot 8_9 \\ 0 \cdot 69_5 \\ 0 \cdot 51 \\ 0 \cdot 20_4 \\ 0 \cdot 10_5 \\ 0 \cdot 043 \\ 0 \cdot 011_5 \\ 0 \cdot 004_9 \\ 0 \cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5 \cdot 8_6 \\ 0 \cdot 292 \\ 0 \cdot 058 \\ 0 \cdot 0040 \end{array}$	$\begin{array}{c} 5 \cdot 0_{7} \\ 4 \cdot 6_{5} \\ 4 \cdot 1_{9} \\ 3 \cdot 5_{0} \\ 3 \cdot 2_{0} \\ 2 \cdot 8_{0} \\ 2 \cdot 3_{8} \\ 1 \cdot 9_{8} \\ 1 \cdot 5_{5} \\ 1 \cdot 1_{0} \\ 0 \cdot 90 \\ 0 \cdot 72 \\ 0 \cdot 53 \\ 0 \cdot 20 \\ 0 \cdot 10 \\ 0 \cdot 03_{2} \\ 0 \cdot 014_{5} \\ 0 \cdot 005_{0} \\ 0 \cdot 001_{3} \\ \dots \\ 290 \\ 4 \cdot 9_{7} \\ 0 \cdot 294 \\ 0 \cdot 063 \\ 0 \cdot 0056 \end{array}$	$\begin{array}{c} \text{Ni} \\ 7 \cdot 0_4 \\ 6 \cdot 2_0 \\ 5 \cdot 4_0 \\ 4 \cdot 3_6 \\ 3 \cdot 7_2 \\ 3 \cdot 1_0 \\ 2 \cdot 5_2 \\ 1 \cdot 9_7 \\ 1 \cdot 4_6 \\ 1 \cdot 0_0 \\ 0 \cdot 7_5 \\ 0 \cdot 5_5 \\ 0 \cdot 3_8 \\ 0 \cdot 24_5 \\ 0 \cdot 15 \\ 0 \cdot 07_3 \\ 0 \cdot 03_0 \\ 0 \cdot 017 \\ 0 \cdot 009 \\ 0 \cdot 004_5 \\ \dots \\ 390 \\ 11 \cdot 2 \\ 0 \cdot 214 \\ 0 \cdot 045 \\ 0 \cdot 0061 \\ 0 \cdot 002_0 \end{array}$	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·7 ₂ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 — — 295 10·5 ₅ 0·320 0·083 ₄ 0·0117 0·003 ₈	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 00002_4 \\ 225 \\ 7\cdot 7_3 \\ 0\cdot 301 \\ 0\cdot 070 \\ 0\cdot 0074 \\ 0\cdot 001_9 \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·28 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·0022 0·0063 0·0025 0·0008 0·0001 ₇ 310 1·80 0·289 0·058 0·0040 0·0006 ₄	$\begin{array}{c} 1 \cdot 61 \\ 1 \cdot 47 \\ 1 \cdot 34 \\ 1 \cdot 16 \\ 1 \cdot 04 \\ 0 \cdot 92 \\ 0 \cdot 79_5 \\ 0 \cdot 67_5 \\ 0 \cdot 54_5 \\ 0 \cdot 29_0 \\ 0 \cdot 35_5 \\ 0 \cdot 29_0 \\ 0 \cdot 23_0 \\ 0 \cdot 17 \\ 0 \cdot 11 \\ 0 \cdot 058 \\ 0 \cdot 020 \\ 0 \cdot 010 \\ 0 \cdot 0038 \\ 0 \cdot 0011 \\ 0 \cdot 0002 \\$	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1:32 0:310 0:070 0:007 ₀ 0:0014	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·008 ₅ 0·0002 ₅ 0·00004 ₃ 0·000003 ₆ 0 2·27 0·256 0·042 0·003 ₂ 0·0007
$\begin{array}{c} \rho_{\theta} \\ \rho_{295} \\ \rho_{273} \\ \rho_{250} \\ \rho_{220} \\ \rho_{200} \\ \rho_{180} \\ \rho_{160} \\ \rho_{140} \\ \rho_{120} \\ \rho_{90} \\ \rho_{80} \\ \rho_{70} \\ \rho_{60} \\ \rho_{50} \\ \rho_{40} \\ \rho_{30} \\ \rho_{25} \\ \rho_{20} \\ \rho_{15} \\ \rho_{10} \\ \rho_{\theta} \\ \rho_{0} \\ \rho_{\theta} \\ \rho_$	Ru 7·3 ₇ 6·6 ₉ 5·9 ₆ 5·0 ₂ 4·3 ₈ 3·7 ₅ 3·1 ₀ 2·4 ₈ 1·8 ₅ 1·2 ₅ 0·91 0·64 0·43 0·24 0·10 ₅ 0·03 ₈ 0·01 ₀ 0·00 ₅ 500 14 0·317 0·09 ₀	9·1 ₃ 8·3 ₅ 7·5 ₀ 6·4 ₅ 5·7 ₀ 5·0 ₀ 4·2 ₂ 3·50 2·70 1·90 1·50 0·26 0·11 0·02 ₈ 0·01 ₂ 400 13 0·325 0·08 ₅	$\begin{array}{c} 5.8_0 \\ 5.1_5 \\ 4.5_0 \\ 3.7_2 \\ 3.2_3 \\ 2.7_5 \\ 2.2_6 \\ 1.7_8 \\ 1.3_2 \\ 0.91 \\ 0.72 \\ 0.54 \\ 0.38 \\ 0.25 \\ 0.14_5 \\ 0.002_7 \\ 0.001_4 \\ 0.006_6 \\ 0.002_7 \\ 0.001_1 \\ \\ \\ \\ \end{array}$	$\begin{array}{c} 4\cdot 7_8 \\ 4\cdot 3_6 \\ 3\cdot 9_0 \\ 3\cdot 3_1 \\ 2\cdot 9_2 \\ 2\cdot 5_2 \\ 2\cdot 1_2 \\ 1\cdot 7_1 \\ 1\cdot 2_8 \\ 0\cdot 8_9 \\ 0\cdot 69_5 \\ 0\cdot 51 \\ 0\cdot 20_4 \\ 0\cdot 10_5 \\ 0\cdot 043 \\ 0\cdot 011_5 \\ 0\cdot 004_9 \\ 0\cdot 001_8 \\ \dots \\ \dots \\ \dots \\ 350 \\ 5\cdot 8_6 \\ 0\cdot 292 \\ 0\cdot 058 \\ 0\cdot 0040 \\ 0\cdot 0007_5 \\ \dots \\ $	5·07 4·65 4·19 3·50 3·20 2·80 2·38 1·98 1·55 1·10 0·90 0·72 0·53 0·20 0·10 0·03 0·0014 5 0·0014 	Ni 7·0 ₄ 6·2 ₀ 5·4 ₀ 4·3 ₆ 3·7 ₂ 3·1 ₀ 2·5 ₂ 1·9 ₇ 1·4 ₆ 1·0 ₀ 0·75 0·55 0·38 0·24 ₅ 0·15 0·07 ₃ 0·03 ₇ 0·017 0·009 0·004 ₅ 390 11·2 0·214 0·045 0·002 ₀ 0·0007 ₅	Pd 10·5 ₅ 9·7 ₀ 8·8 ₂ 7·6 ₆ 6·9 ₀ 6·0 ₆ 5·1 ₉ 4·3 ₃ 3·4 ₆ 2·6 ₀ 2·1 ₇ 1·30 0·92 0·58 0·32 0·13 0·074 0·036 0·014 ₅ 0·004 ——— 295 10·5 ₅ 0·320 0·083 ₄ 0·0117 0·003 ₈ 0·0013	$\begin{array}{c} 10\cdot 42 \\ 9\cdot 59 \\ 8\cdot 70 \\ 7\cdot 54 \\ 6\cdot 76 \\ 5\cdot 97 \\ 5\cdot 18 \\ 4\cdot 37_5 \\ 3\cdot 56_5 \\ 2\cdot 74_2 \\ 2\cdot 32_6 \\ 1\cdot 90_9 \\ 1\cdot 49_7 \\ 1\cdot 09_4 \\ 0\cdot 719 \\ 0\cdot 396 \\ 0\cdot 160 \\ 0\cdot 0837 \\ 0\cdot 0359 \\ 0\cdot 0116 \\ 0\cdot 0029 \\ 0\cdot 001_4 \\ 0\cdot 0006_5 \\ 0\cdot 0002_4 \\ 225 \\ 7\cdot 7_3 \\ 0\cdot 301 \\ 0\cdot 070 \\ 0\cdot 0074 \\ \end{array}$	Cu 1·70 1·55 1·40 1·20 1·06 0·92 0·77 ₅ 0·63 ₅ 0·49 ₀ 0·35 ₀ 0·21 ₅ 0·15 ₃ 0·095 0·050 0·022 0·063 0·0025 0·0008 0·0001 ₇ 310 1·80 0·289 0·058 0·0040 0·0006 ₄ 0·0001 ₂	$\begin{array}{c} 1 \cdot 61 \\ 1 \cdot 47 \\ 1 \cdot 34 \\ 1 \cdot 16 \\ 1 \cdot 04 \\ 0 \cdot 92 \\ 0 \cdot 79_5 \\ 0 \cdot 67_5 \\ 0 \cdot 54_5 \\ 0 \cdot 23_0 \\ 0 \cdot 35_5 \\ 0 \cdot 29_0 \\ 0 \cdot 23_0 \\ 0 \cdot 17 \\ 0 \cdot 11 \\ 0 \cdot 058 \\ 0 \cdot 020 \\ 0 \cdot 010 \\ 0 \cdot 0038 \\ 0 \cdot 0011 \\ 0 \cdot 0002 \\$	Au 2:20 2:01 1:83 1:60 1:44 1:28 1:12 0:95 ₅ 0:79 ₀ 0:63 ₀ 0:54 ₅ 0:46 ₀ 0:38 0:29 0:20 0:12 0:050 0:027 0:0125 0:0037 0:0006 185 1:32 0:310 0:070 0:007 ₀	Na 4·8 ₄ 4·4 ₀ 3·9 ₃ 3·36 2·99 2·63 2·27 1·92 1·57 1·21 1·03 0·85 0·67 ₅ 0·51 0·34 0·19 0·07 ₇ 0·03 ₉ 0·01 ₇ 0·005 ₆ 0·0008 ₅ 0·0002 ₅ 0·00003 ₆ 0 2·27 0·256 0·042 0·003 ₂

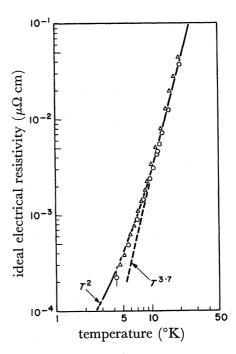


FIGURE 4. Ideal electrical resistivity below 100 °K, of Ti, Zr, Hf, V, Nb, Ta.

FIGURE 6. Ideal electrical resistivity of platinum below 20 °K: —, de Haas & de Boer (1933); △, Pt 2; ○, Pt-T 4.

Table 3. Index of T (in expression $\rho_i \propto T^m$) for range $\theta/2$ 0 $< T < \theta/1$ 0, AND APPROXIMATE LOWER LIMIT OF OBSERVATION IN BRACKETS

Ti	$5.3 \ (>15 \ ^{\circ}K)$	$Zr ext{4.5 (>13 °K)}$	Hf $4.7 \ (>10^{\circ} \text{K})$
\mathbf{v}	$3.4 \ (>12 \text{ °K})$	Nb 2.7 (figure 5)	Ta 3.8 (>8 °K)
\mathbf{Cr}	$3.2 \ (>15 \text{ °K})$	Mo $5.1 \ (>20 \ ^{\circ}K)$	W 4.0 (figure 5)
Mn	2.0 (figure 2)	Tc — —	Re $4.6 \ (>10 {}^{\circ}\text{K})$
	3·3 (figure 5)	Ru $4.7 \ (>25 \ ^{\circ}K)$	Os $4.7 \ (>25 \ ^{\circ}K)$
Co	3·3 (figure 5)	Rh $4.6 \ (>20 \ ^{\circ}\text{K})$	Ir $4.7 \ (>12 \ ^{\circ}K)$
Ni	3·1 (figure 5)	Pd 3.2 (figure 5)	Pt 3.7 (figure 6)
Cu	5·1 (>10 °K)	Ag $4.7 \ (>10 \text{ °K})$	Au $5.1 \ (>10 \text{ °K})$
Na	5.0 for T > 8 °K, 6.0 for	T < 8 °K (See Woods 1956)	,

RESISTIVITY OF TRANSITION ELEMENTS (56), Bijl (1957) and some of the original references listed by these auth

Pearlman (1956), Bijl (1957) and some of the original references listed by these authors. Unfortunately, there is a dearth of specific heat data for niobium, ruthenium and osmium at other than very low temperatures and we believe the values of θ_D for these elements are least reliable.

In each column of table 2, the numbers printed in italics represent the region where the residual resistivity for the purest specimen examined is comparable with the ideal resistivity, thus below this entry, $\rho_i < \rho_0$.

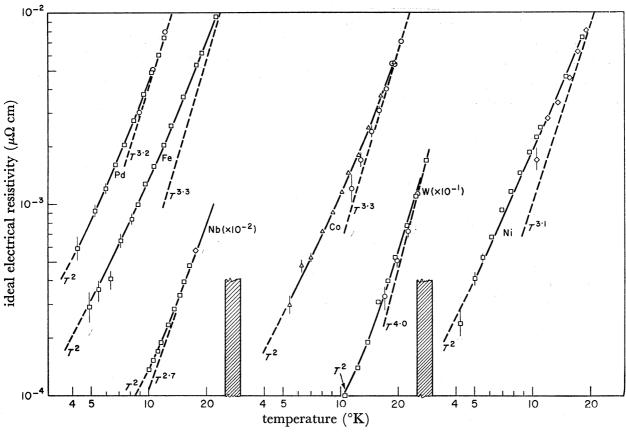


FIGURE 5. Ideal electrical resistivities below 20 °K for those elements (excepting Pt, Mn) for which ρ appears to follow a T^2 law at very low temperatures, namely, Nb (\square , 3); W (\bigcirc , 1; \square , 2); Fe (\square , 2); Co (\bigcirc , 1; \triangle , 2); Ni (\bigcirc , 2; \square , 3); Pd (\bigcirc , 8; \square , 9).

Examples of the differing behaviour of ρ_i below 100 °K for some of the elements are shown in figure 4; bracketed numbers beside the symbols for the elements denote the index of T or power law which ρ_i appears to follow in the region from about $\theta_D/10$ to $\theta_D/20$. These indices are summarized in table 3. In some instances, notably Mn, Fe, Co, Ni, Pd, W, Pt and perhaps Nb, there is evidence that at the lowest temperatures this index decreases. Thus it appears that ρ_i may be proportional to T^2 at the lowest temperatures in these elements. The case of niobium is most doubtful as no very precise figure for ρ_0 can be obtained, since niobium becomes superconducting at about $9\cdot 2$ °K and the measured resistivity has not become quite constant at this temperature. Analyses of the electrical resistivity of niobium below 15 °K show that it may be represented quite well by either an expression $A + BT^2 + CT^5$ or $A + BT^3$, the values of A (and hence ρ_0) differing slightly in the two cases. If we assume

an $A+BT^2+CT^5$ analysis is correct, then ρ_i for Nb is shown in figure 5. The ideal electrical resistivity below 25 °K for the other elements which exhibit this tendency to a T^2 behaviour is shown in figures 5 and 6.

The approximate magnitudes of the T^2 term in $\mu\Omega$ cm units are as follows:

$$\operatorname{Mn}(0.15\,T^2), \qquad \operatorname{Nb}(140\times 10^{-6}\,T^2), \qquad \operatorname{W}(10\times 10^{-6}\,T^2),$$
 $\operatorname{Fe}(13\times 10^{-6}\,T^2), \qquad \operatorname{Co}(13\times 10^{-6}\,T^2), \qquad \operatorname{Ni}(16\times 10^{-6}\,T^2),$ $\operatorname{Pd}(33\times 10^{-6}\,T^2), \qquad \operatorname{Pt}(14\times 10^{-6}\,T^2).$

Whether this apparent T^2 dependence does exist in other elements is difficult to say, as many of them were not of ideal geometrical form, i.e. were not fine wires, nor of sufficiently high purity to allow accurate observations of ρ_i at very low temperatures. However, in pure zirconium and pure rhenium, such a dependence should have been observed if it was as large as that in the above metals.

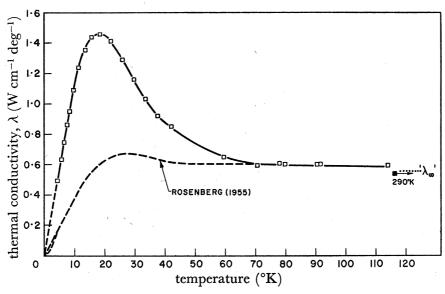


Figure 7. Thermal conductivity of tantalum: \Box , Ta 3; \blacksquare , Barratt & Winter (1925); ..., ' λ_{∞} ' = LT/ρ .

3.2. Thermal resistivity

The thermal conductivity, λ , of metallic elements generally follows a familiar pattern; it rises linearly with temperature at the lowest temperatures, passes through a maximum and becomes fairly constant above about $100\,^{\circ}$ K. The behaviour for tantalum (figure 7) is rather typical although the maximum is much smaller in magnitude than those observed (see figures in earlier reports of this work) in the higher purity specimens—Cr, W, Re, Ru, Rh, Ni, etc. At the lowest temperatures $\rho\lambda/T$ is constant and has the values indicated by L_0 in table 1. Experimental values of $L_0 = \rho_0 \lambda_0/T \equiv \rho_0/W_0 T$ (equation (2)) appear to be quite close to the theoretical Lorenz ratio of $2\cdot45\times10^{-8}\,\mathrm{W}\,\Omega\,\mathrm{deg}^{-2}$ except in rather impure specimens—Ti, Hf, V and Mn—for which the ratio is appreciably greater.

The variation of thermal conductivity with temperature is shown in figure 8 for titanium and zirconium (not previously published), and the more unusual behaviour for manganese is illustrated in figure 9.

As in the electrical case, we may assume that Matthiessen's rule is valid and deduce values from experimental data for

 $W_i(T) = W(T) - W_0(T)$,

where

$$W_0 = A/T$$
 and $W(T) = 1/\lambda(T)$.

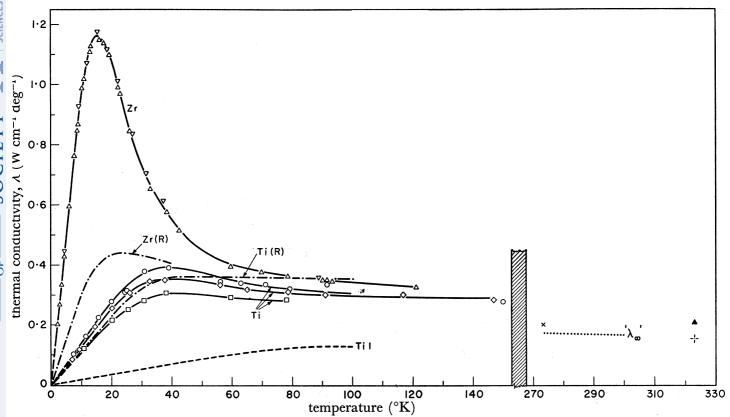


FIGURE 8. Thermal conductivity of titanium and zirconium. (R) signifies Rosenberg (1955) and $\lambda_{\infty}' = LT/\rho$. \circ , Ti 3; \Box , Ti 4; \diamond , Ti 5; \triangle , Zr 4; ∇ , Zr 4a; +, Ti (Silverman 1953); \times , Ti (Rigney & Bockstahler 1951); A, Zr (Deem 1953a, also Bing et al. 1951).

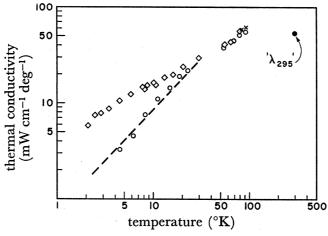


FIGURE 9. Thermal conductivity of manganese. 0, Mn2; — —, Rosenberg (1955); \diamondsuit , Mn 3; \times , Reddemann 1935 (β -Mn); \bullet , ' λ_{295} ' = LT/ρ .

Typical behaviour of $W_i(T)$ is shown by curves in figure 10, the data for these being taken from our low-temperature values of thermal conductivity and extrapolated (usually from above 100 or 150 °K) to room temperature using data given by Powell & Blanpied (1954). For most metallic elements which are relatively good electrical conductors, such as Na, Cu,

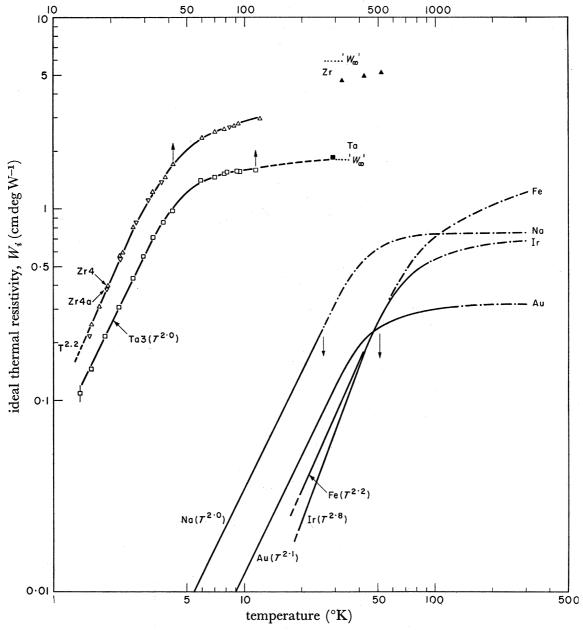


FIGURE 10. Ideal thermal resistivity of Fe, Ir, Na, Au, Ta and Zr. ' W_{∞} ' = ρ/LT . \blacksquare , Ta (Barratt & Winter 1925); \blacktriangle , Zr (from Deem 1953 a, or Bing et al. 1951); — .—, extrapolation using experimental data of earlier workers (see Powell & Blanpied 1954).

Au and also Pt, Pd, Ir and Mo, the ideal resistivity W_i becomes fairly constant for $T \ge \theta/2$, appearing to approach an asymptotic value, W_{∞} . W_{∞} generally lies close (see table 5) to the value given by the W.-F.-L. relation

$$\rho/W_{\scriptscriptstyle \infty}\,T = 2\cdot 45\times 10^{-8}\,\mathrm{W}\,\Omega\,\mathrm{deg^{-2}}\quad\mathrm{for}\quad T\!\!\geqslant\!\!\theta_{\scriptscriptstyle D}$$

For ferromagnetic elements, however, W_i continues to increase with temperature at higher temperatures; the curve for iron, shown in figure 10, illustrates this.

Also for elements which are rather poor conductors, e.g. titanium and zirconium, values of W_i obtained at temperatures near $\theta_D/2$ are still much smaller than the values of W_{∞} given by the W.-F.-L. law or than those obtained from the few measurements of heat conductivity at and above room temperature. We suggest below that lattice heat conduction may make an appreciable contribution at 100 °K or less which would result in the values deduced for W_i being appreciably lower than if only electronic conduction was present.

Table 4. Ideal thermal resistivities (cm deg/W)

							710 11 1 1 1 1 1	20 (Cara 2)				
											\boldsymbol{C}	
											(Rosen	n
element	$W_{\infty} = W_{295}$	W_{140}	W_{110}	W_{80}	W_{60}	W_{40}	W_{30}	W_{20}	W_{10}	$C\dagger$	berg)	(index)
Ti	5.0	3.0	$2 \cdot 6_{5}$	$2\cdot 3$	1.8*	0.9_{6}^{-}	0.4_{8}		_	≃ 15	~100	$\simeq 2.3$
\mathbf{Zr}	4.8		$2 \cdot 9_5^5$	2.65	$2 \cdot 3_5$	1.6°_{0}	1.0*	0.43		14.8	16.4	$-\frac{1}{2\cdot 2}$
Hf	4.5			2.5°	2.0*	$1\cdot 2^0$	0.75	<u> </u>		9		
V	2.8		$2 \cdot 3$	2.0	1.6*	0.75	0.36			24	~ 60	$2 \cdot 4$
Nb	1.9		1.75	1.6	1.35	0.82*	0.4-	$\begin{array}{c} 0.2_2 \\ 0.25_5 \end{array}$		18	16.5	1.9
Ta	1.85		1.6	1.54	1.4_{0}^{3}	0.94	0·4 ₇ 0·5 ₈ *	0.25.		18.4	22.6	2.0
Cr	1.1_{6}^{3}	0.71	0.62	0.4^{4}_{9}	0.3_{5}^{0}	0.1_{6}^{4}	0.0_{9}^{8}	$0.04_{5}^{3}*$		20		ī.š
Mo	$0.\overline{69}$	0.63	0.55	0.40	0.27*	0.11_{5}	0.06			15.2	15.7	2^{-}
W	0.595	0.5_{0}	0.47	0.40	0.32	0.13^{3}_{5}	0.064*	0.02_{2}		11.9	15.5	2.6
Mn, Tc		_	_						<u> </u>			
Re	2.6	-	1.7	1.5	1.2	0.65	0.34	0.09*		10		3.0
Fe	$1 \cdot 2_2$	0.9^{3}	0.80	0.60	0.38*	0.16	0.086	0.03_{5}		13.1	13	2.2
Ru	1.0	0.7_{8}^{3}	0.71	0.55	0.33	0.09_{5}	0.03-*	0.01^{3}		20		3.3
Os	1.2_{5}	0.9°_{0}	0.86	0.70	0.50	0.18_{5}^{3} *	0.08_{5}^{\prime}		. —	14.8		2.7
Co	0.8	0.66	0.60	0.47	0.34	0.16_{5}^{3}	0.094*	0.04_{2}		18.8	19	$2 \cdot 0$
Rh	0.66	0.62	0.57	0.42	0.26	0.085	0.035*	0.01^{2}		9 -	19.8	3.0
\mathbf{Ir}	0.68_{5}	0.62	0.57	0.48	0.36	0.15*	0.07,	0.02_{2}		9.3	6	2.8
Ni	1.1	0.74	0.65	0.50	0.36	0.18	0.105*	0.04_{7}^{2}		15.9	14.4	$2 \cdot 0$
\mathbf{Pd}	1.4	1.35	1.3	1.2	1.0	0.57	0.33°	0.14.*	0.03_{6}	22	25	2.0
Pt	1.4	— .	1.3	$1 \cdot 2$	1.05	0.70	0.45	$0.19_{5}^{5}*$	0.04_{5}^{0}	17.8	15.6	2.1
				1,1				3.5				
compare Cu	0.24	0.22	0.20_{5}	0.17	0.11	0.050	0.026	0.010*	0.002	11.3	10	9.4
	$0.24 \\ 0.23$	0.22 0.22	$0.20_5 \\ 0.22$	$0.17 \\ 0.21$	$0.11_{5} \\ 0.17_{5}$	0.095	0.020 0.05_0	0.010*	0.002 0.003	10	11.5	$\begin{array}{c} 2 \cdot 4 \\ 2 \cdot 4 \end{array}$
Ag Au	0.32	0.22	0.22	$0.21 \\ 0.29$	0.17_{5} 0.26^{5}	$0.095 \\ 0.195$	0.03_0 0.12	0.053*	0.003 ₅	14.1	20	2.4
Na	0·32 0·75	$0.31 \\ 0.75$	0.30	0.29	0.20	$0.19_{5} \\ 0.51$	0.12	0.055	0.036*	$_{12.5}^{14.1}$	20	$2 \cdot 1$ $2 \cdot 0$
INA	0.19	0.79	0.19	0.13	0.09	0.91	0.99	0.149	0.090*	$\overline{C} \simeq 15$	$\bar{C} \simeq 16$	
						147 / 4 \ 2				C = 15	0.210	omitting
					$\dagger C = \frac{1}{2}$	$\frac{W_i}{W_\infty} \left(\frac{\theta}{T}\right)^2$ at	$\theta/10$.	* *				Ti, V)
					V	$V_{\infty}(I)$	₹'					

In table 4 values are listed for $W_i(T)$ at various temperatures from 140 down to 20 °K; these are taken from curves (for example, figure 10) of our experimental results supplemented by other data (Powell & Blanpied 1954) where available. For molybdenum we have used data from Rosenberg (1955) and Kannuluik (1933). Asterisks in the rows of table 4 locate the temperature regions where the impurity thermal resistivity $W_0 (\simeq A/T)$ in the purest samples was comparable with W_i . It may be seen from figure 10 that for $T \le \theta_D/10$, the ideal thermal resistivity may be represented by $W_i \simeq BT^n$ and values of the index n obtained in the range $\theta_D/20$ to $\theta_D/10$ are given in table 4. Generally, $1.9 \le n \le 3.0$ although for ruthenium it appears that $n \simeq 3.3$. Also values for W_{∞} which are generally taken from heat conductivity measurements made near room temperature on pure samples (see § $1 \cdot 3$) appear in table 4. For Re, Ru, Os and Co we have been obliged to assume that W_{∞} is given by

$$W_{\infty} \simeq \rho/LT \simeq \rho_i(295)/2 \cdot 4_5 \times 10^{-8} \times 295.$$

As we mentioned earlier it is expected theoretically that $W_i \propto T^{2\cdot 0}$ for $T \leq \theta_D/10$ and there is interest in the relation of the reduced resistivity W_i/W_{∞} to T/θ_D . Values for

$$C = \frac{W_i}{W_{\infty}} \left(\frac{\theta_D}{T}\right)^2$$
 at a temperature $T = \theta_D/10$

appear in table 4 as well as values deduced for the temperature region $T \le \theta_D/10$ from values of $B = W_i/T^2$ given by Rosenberg (1955) for a number of these elements. Rosenberg assumed that to a first approximation $W_i \simeq T^2$ at very low temperature, plotted WT against T^3 and obtained values for B from the slope of these lines. In cases where we find $n \simeq 2$, his values of C lie fairly close to ours, but for materials such as titanium and vanadium, with a high impurity resistivity, the lattice conduction is not negligible compared to the electronic conduction at very low temperatures, and it will strongly affect the temperature dependence of the resistivity and lead to erroneous estimates of the ideal thermal resistivity made in this region.

TADIE	5	PHYSICAL	DATA
LABLE	Ð.	THYSIGAL	DAIA

TABLE 5. PHYSICAL DATA λ_{295}							
element	structure	M	θ_{D} (°K)	$rac{ ho M heta \Omega^{lat}}{T}$	$(\exp t.) \ (W \text{ cm}^{-1} \ \deg^{-1})$	λ_{295} , $=LT/ ho$	$\gamma \over (10^{-3}\mathrm{J/mole~deg^2})$
Ti Zr Hf	h.c.p. h.c.p. h.c.p.	$47.9 \\ 91.2 \\ 178.6$	360 250 210	2·3 2·3 2·3	$0.20 \\ 0.21 \\ 0.22$	$0.16_{8} \ 0.17_{1} \ 0.23_{6}$	$3.3 \\ 3.0 \\ 2.6$
V Nb Ta	b.c.c. b.c.c. b.c.c.	50.95 92.9 180.9	390 250 230	1·2* 0·8 1·1	$0.36 \\ 0.53 \\ 0.54$	$0.36_{3} \\ 0.49_{9} \\ 0.55_{2}$	$9.0 \\ 9.2 \\ 5.9$
Cr Mo W	b.c.c. b.c.c. b.c.c.	52.0 95.95 183.9	480 380 315	1·2* 0·6 0·8	0.8_6 1.4_5 1.7	$0.56_{0} \\ 1.36 \\ 1.36$	$egin{array}{c} 1\!\cdot\! 5 \ 2\!\cdot\! 1 \ 1\!\cdot\! 2 \end{array}$
Mn Tc	cubic complex —	54·9 (99)	410	10.7†		0.053	14
Re	h.c.p.	186·3	280	2.2		0.389	2
Fe Ru Os	b.c.c. h.c.p. h.c.p.	55.85 101.7 190.2	400 500 400	$0.7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0·82 — —	$0.73_{8} \\ 0.98_{1} \\ 0.79_{2}$	$egin{array}{c} 5 \cdot 0 \ 3 \cdot 3 \ 2 \cdot 3 \end{array}$
Co Rh Ir	h.c.p. f.c.c. f.c.c.	$58.9 \\ 102.9 \\ 193.1$	380 350 290	0·3 ₅ ‡ 0·5 0·65	1·51 1·46	$1.25 \\ 1.51 \\ 1.43$	$5.0 \\ 4.9 \\ 3.1$
Ni Pd Pt	f.c.c. f.c.c. f.c.c.	58·7 106·7 195·2	390 295 225	$0.45 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0·91 0·7 0·7	$1.03 \\ 0.68_{5} \\ 0.69_{4}$	7·0 9·9 6·7
Cu Ag Au	f.c.c. f.c.c. f.c.c.	$63.5 \\ 107.9 \\ 197.2$	$\frac{310}{220}$ $\frac{185}{185}$	$0.08 \\ 0.07 \\ 0.12$	$egin{array}{c} 4 \cdot 1 \ 4 \cdot 2 \ 3 \cdot 1 \end{array}$	$egin{array}{c} 4 \! \cdot \! 25 \ 4 \! \cdot \! 49 \ 3 \! \cdot \! 29 \end{array}$	0·8 0·7 0·7
Na	b.c.c.	23.0	160	0.03	$1 \cdot 3_5$	1.54	1.4

^{*} Anomaly in resistivity.

We have not been able to deduce W, values for manganese; and those for titanium, hafnium and vanadium are probably unreliable as the samples were rather impure and the results may be influenced by the presence of lattice conduction.

4. Discussion

4.1. Electrical resistivity

With a few exceptions which we may call anomalous, the transition elements exhibit an electrical resistivity which is almost a linear function of temperature from 295 down to ~100 °K. Below this ρ_i falls more rapidly and in the range $\theta_D/10$ to $\theta_D/20$, $\rho_i \propto T^m$, where

[†] If a spin disorder term $(\rho_s \simeq 112 \times 10^{-6} \Omega \text{ cm})$ is subtracted from ρ_i , then the parameter has a value of about 1.7.

[‡] Ferromagnetic elements.

m has values in the range 3 to 5, the index 5 being expected if ρ_i follows a Bloch–Grüneisen relation. The extent to which this relation is obeyed may be judged from the reduced resistivity values in table 2. These show that with the exception of Mn, Co, Ni, Fe, Cr and V (the anomalous elements), ρ_i follows the Bloch–Grüneisen law (using $\theta = \theta_D$) quite well down to about $\theta_D/3$ and tolerably well to below $\theta_D/5$; marked departures occur below about $\theta_D/10$ and these are reflected in the variety of values for the index m. Except perhaps for palladium the J_3 function of equation (7) does not fit the experimental values. In table 2 the values of the reduced resistivity, ρ_i/ρ_θ , may be compared with those predicted by the Bloch–Grüneisen (equation (3)) and the Wilson (equation (7)) functions. For $T/\theta_D = 0.4$, these predict ρ_i/ρ_θ should be 0.30_4 and 0.33, respectively, whereas the mean for all elements listed in table 2 is 0.291 with a mean deviation of ± 0.026 and the mean for those transition elements which are not anomalous is 0.297 ± 0.016 .

For $T/\theta_D = 0.2$ equations (3) and (7) give 0.068 and 0.094, respectively, whereas the experimental means (all elements) are 0.066 ± 0.011 and (restricted number) 0.070 ± 0.009 . For $T/\theta_D = 0.1$, equations (3) and (7) give 0.0049 and 0.0149, respectively, whereas the experimental means are 0.0069 ± 0.0020 and 0.0072 ± 0.0018 . Values of ideal or intrinsic resistivity at room temperature are believed to be correct to within 1% (excepting manganese for which the irregular form of the flakes did not allow reliable estimates of the geometrical form); generally these agree well with values listed earlier in §1.3 from previous work, although in some cases earlier values are higher by a small percentage, reflecting the presence of an appreciable impurity resistance in these values. It may be pointed out that many values quoted and reproduced in standard tables, handbooks and textbooks are quite different from those listed in §1.3 or from those found by us and such values presumably date back to measurements on very impure samples for which there was no knowledge of the impurity resistance.

Turning to the behaviour at temperatures less than $\theta_D/20$, the data in table 3 and figures 5 and 6 indicate that m approaches 2 in the region $T \leq 10^{\circ}$ K for the elements Fe, Co, Ni, Pt, Pd, W and perhaps Nb. de Haas & de Boer (1933) observed this phenomenon for platinum and it was ascribed (Baber 1937) to the effect of electron-electron interactions. Olsen-Bär (1956, see also Mendelssohn 1956) has examined ρ_i for the elements Fe, Co, Ni, Pt, Pd and Rh below 25 °K and her experimental results also suggest that the index m has a value close to 2 at sufficiently low temperatures. It may be significant that it is those elements with a high electronic specific heat that exhibit $\rho_i \propto T^2$ below about 10 °K; possible exceptions are vanadium and tantalum, but our specimens of these elements did not have suitable purity or dimensions for accurate examination below 15 or 20 °K. Two elements of high room temperature resistivity, zirconium and rhenium, were both examined down to about 10 °K, but showed no evidence of a T^2 term in ρ_i and it is interesting that neither of these elements have a particularly large electronic specific heat (see values of γ in table 5, taken largely from reviews by Keesom & Pearlman (1956), Bijl (1957) and from Horowitz & Daunt (1953) and Wolcott (1955)). Values of electronic specific heat give direct information concerning the density of states N(E), since $C_{el} = \gamma T = \text{constant} \times N(E) T$, where N(E) is number of electron energy states per unit energy range at the Fermi surface. The differing density of states at the Fermi surface for the overlapping s- and d-bands should also affect the influence of electron-electron interaction on resistivity and could account for the correlation

between the behaviour of the resistivity at low temperatures and the electronic specific

A similarity of the values of $\rho_i M\theta^2 \Omega^{\frac{1}{2}}/T$ (see § 1·2) for elements within each group warrants attention. At room temperature iron, cobalt and nickel are well below their ferromagnetic Curie temperatures so that it may be assumed that the d-band states with one spin direction are all filled and only about half the s-electrons (those with spins parallel to the spins of the empty d-band states) may make s-d transitions. Hence, we expect ρ_i at 273 °K for these elements to have only about half the value it would have if they were paramagnetic. Taking account of this and neglecting manganese because of its anomalous behaviour it appears that the values shown in table 5 for $\rho_i M\theta^2 \Omega^{\frac{1}{3}} T^{-1}$ at 273 °K are approximately the same for the elements within a group. Unfortunately, these data do not give unambiguous information about the number of conduction electrons or the electron energy density functions for these elements, but may be a guide in this direction.

Anomalous elements

Vanadium. Our vanadium specimens were more impure than any of the other specimens we used and it is possible that the change in slope of the curve of ρ_i against T at about 200 °K (figure 2) may be connected with an appreciable oxygen content. While investigating the vanadium-oxygen phase diagram, Rostoker & Yamamoto (1955) measured the resistance of a vanadium bar in the range -60 to $+20\,^{\circ}\mathrm{C}$ and observed a small anomaly (similar in form to that in figure 2) at about 240 °K. They suggest that at low temperatures the stable structure may be body centred tetragonal, this being the β -phase which occurs in the V+Osystem at room temperature. It is hoped that high-purity specimens will become available or that we may further purify some rods by electron-bombardment zone-melting and then re-examine this minor anomaly.

Chromium. The anomaly previously observed in the electrical resistance at room temperature persists in this high-purity ductile chromium and must be assumed to be associated with the anomalies found in thermoelectric power, expansion coefficient, Young's modulus and in internal friction at 35 to 40 °C (see the book by Sully 1955 on chromium). Recently a very detailed X-ray examination by Straumanis & Weng (1955) has revealed a change in the variation of the lattice constant with temperature at 32.5 °C, corresponding to an expansion coefficient of 4.4×10^{-6} /°C below 32.5 °C and of 7.47×10^{-6} /°C above 32.5 °C. Bridgman (1932–33) observed that the resistance anomaly (a plateau with a very shallow minimum at 37 °C in our specimens) shifted to lower temperatures with increase in pressure. Magnetic susceptibility measurements (again see Sully's book) have shown no peculiarity and the weak antiferromagnetic transition observed by Shull & Wilkinson (1953) was at 450 °K.* Detailed specific heat studies, perhaps a re-examination of magnetic susceptibility of high purity chromium and nuclear resonance studies giving the Knight shift over the range 10 to 50 °C might each help to clarify the situation.

Manganese. In comparison with other metals, the resistivity-temperature relation in α-manganese (see figure 2) appears most peculiar; the resistivity above 100 °K is more than

^{*} Note added in proof (17 December 1958): Dr R. J. Weiss of the Ordnance Materials Research Laboratory, Watertown, Mass. has shown (private communication 1958) that the antiferromagnetic transition occurs in solid chromium (a single crystal) at 38.5 °C.

 $100\,\mu\Omega$ cm and decreases quite slowly with temperature, but appears to have a slight minimum at the temperature of the reported antiferromagnetic transition ($100\,^{\circ}$ K by Shull & Wilkinson 1953) and falls rapidly below about $60\,^{\circ}$ K, finally decreasing as T^2 below about $30\,^{\circ}$ K. Recently a paper by Mott & Stevens (1957) and a review by Coles (1958) have pointed out that in manganese and in some rare-earth elements a large spin-disorder term may arise in the resistance above the Curie temperature and be temperature independent. According to their arguments the unpaired electrons must be regarded as being localized on particular atoms causing them to possess localized, but randomly oriented spins which may interact with the conduction electrons giving an additional term in the electrical resistance. Below the Curie temperature, ordering of the spins should decrease this resistance term markedly. If the ρ -T curve above $100\,^{\circ}$ K be extrapolated to $T=0\,^{\circ}$ K a spin disorder resistivity of about $112\,\mu\Omega$ cm is deduced for α -manganese which if subtracted (together with ρ_0) from ρ_{273} gives a value for $\rho_{i(273)}$ of $24\,\mu\Omega$ cm. The value of $\rho_i M\theta^2\,\Omega^{\frac{1}{2}}/T$ would then be about $1\cdot7$, similar to that for rhenium.

Iron, cobalt and nickel. The ferromagnetic Curie temperatures of these elements are 1043, 1400 and 631 °K, respectively. The rapid filling of the d-band states with one spin direction (5 of the 10 states per atom) as the material is cooled below the Curie temperature is the suggested explanation of the rather rapid decrease in electrical resistivity in this temperature region (see, for example, Mott & Jones 1936) and the subsequent tendency to a linear variation with temperature at about 100 to 200 °K when only electrons of one spin can make s-d transitions. This behaviour is illustrated in figure 3 although only a short portion of the rapid change is shown near room temperature.

4.2. Thermal resistivity

Despite differing band structures and effective numbers of free electrons, the ideal thermal resistivities follow much the same pattern for the transition elements (excepting manganese) as for the monovalent elements with a few exceptions, namely:

- (a) A tendency for the index n in the expression $W_i = BT^n$ ($T \le \theta_D/10$) to have rather larger values (see table 4 where n > 2.5 for W, Re, Rh, Os and Ir). In Cu and Ag, n is observed to be about 2.4 rather than the value 2.0 predicted by theory, and it has been suggested that this is due to a decreasing probability of Umklapp processes in this temperature range. For the transition elements there is the added possibility of an exponential decrease in the probability of s-d transitions, lowering their contribution to the thermal resistance as the temperature is lowered. The mere presence of s-d transitions does not affect the temperature dependence as both $W_i(ss)$ and $W_i(sd)$ should vary as T^2 (for $T \le \theta$) in contrast to the electrical case where $\rho_i(ss) \propto T^5$ and $\rho_i(sd) \propto T^3$ (see, for example, Klemens 1956).
- (b) In the ferromagnetic elements, Fe, Co and Ni, the ideal resistivity W_i continues to increase with T at normal temperatures rather than to approach a constant value W_{∞} , as it is observed to do for the alkali metals, for Cu, Ag, Au and also for Pt, Rh, Ir and Pd, for example. Presumably this is another effect of the band structure believed to be responsible for the electrical resistance peculiar to ferromagnetic elements (see § 4·1).
- (c) In table 5 values are given for the thermal conductivity observed at or near 295 °K and also values calculated from the electrical resistivity at 295 °K using the Wiedemann–Franz

law. For those elements which have a particularly high resistivity and for which quite pure specimens were available for the thermal conductivity measurements (e.g. Ti, Zr, Hf, Nb and Cr), the measured value, λ_{295} , appears to be appreciably greater than LT/ρ . This suggests the presence of an appreciable lattice component in the thermal conductivity which would be most noticeable in these elements with high resistivity. Also for these elements W_i shows the greatest change between our highest temperature readings (110 or 140 °K in table 4) and those obtained near room temperature by previous workers. The values shown

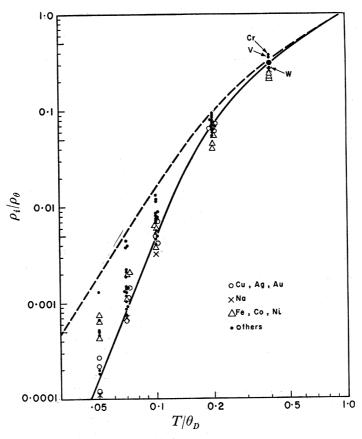


FIGURE 11. Reduced values of ideal electrical resistivity ρ_i/ρ_θ as function of T/θ_D for transition elements, and Cu, Ag, Au, Na. —, represents $\rho_i/\rho_\theta = 4 \cdot 226 (T/\theta_D)^5 \int_0^{\theta/T} \frac{x^5 \, \mathrm{d}x}{(\mathrm{e}^x - 1) \, (1 - \mathrm{e}^{-x})};$ ——, $\rho_i/\rho_\theta = 2 \cdot 084 (T/\theta_D)^3 \int_0^{\theta/T} \frac{x^3 \, \mathrm{d}x}{(\mathrm{e}^x - 1) \, (1 - \mathrm{e}^{-x})}.$

in table 5 confirm that in Ti, Zr, Cr, Re and perhaps in Hf, W_i must increase substantially between 100 and 295 °K in contrast with the behaviour in other elements with comparable θ_D (e.g. Cu, Ag, Au).

The lattice component of conductivity, λ_g , should vary as 1/T in the region $T \geqslant \theta$, where anharmonic coupling between lattice vibrations is the major limitation on λ_g . From table 5 it might appear that $\lambda_g(295)$ is of the order of 0.03 to 0.05 W cm⁻¹ deg⁻¹ in Ti, Zr, Nb, ~ 0.1 in Mo and ~ 0.3 in Cr and W (assuming $\lambda_g(295) \simeq \lambda_{295}(\text{expt.}) - LT/\rho$).

There is no direct method of measuring λ_g in good metallic conductors and the theoretical treatments (for example, Leibfried & Schlömann 1954; Dugdale & MacDonald 1955)

have been based on models of simple cubic crystals. These treatments produce equivalent results of which a convenient form is

$$\lambda_g \simeq 3.6 \frac{M A_0 \theta_D^3}{\gamma^2 T} \text{W cm}^{-1} \text{deg}^{-1},$$
(12)

where A_0 is lattice constant and γ the Grüneisen parameter. For Ag and Cu approximate experimental values of λ_g (see work on dilute alloys by Kemp, Klemens, Sreedhar & White 1956; White & Woods 1954) are found to be somewhat smaller but comparable with those predicted by the equation above. Assuming $\gamma \simeq 2$, (12) gives values of λ_g at 295 °K of about

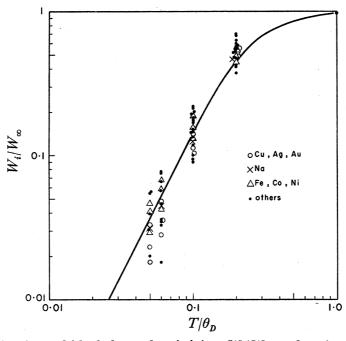


Figure 12. Reduced values of ideal thermal resistivity, W_i/W_{∞} as function of T/θ_D for transition elements and Cu, Ag, Au, Na. —, represents function $W_i/W_{\infty} = 2(T/\theta_D)^2 \int_0^{\theta/T} \frac{x^3 dx}{(e^x - 1)(1 - e^{-x})}$.

0.5 for Cr and W, 0.2 for Fe, Mo, Pt and Cu and 0.1_5 for Ti, Zr, Hf and Nb. These seem rather large in comparison with the values deduced from table 5, but in our experience this equation appears to overestimate λ_g and also future measurements of λ_{295} on very high-purity materials may give somewhat higher experimental values. In any case it seems not improbable that the lattice component, λ_g , is the major cause of departures from the Wiedemann–Franz law in these elements.

(d) The extent to which W_i/W_{∞} departs from the function $(T/\theta)^2 J_3(\theta/T)$ is illustrated in figure 12 and in table 4 by the values of $(W_i/W_{\infty})(\theta/T)^2 \simeq C$ at $T = \theta/10$, which for this function has the value 14.4.

5. Conclusions

By measuring the electrical resistance and thermal conductivity of specimens of the transition elements over a fairly wide range of low temperatures, we have deduced and tabulated values for the intrinsic or ideal electrical resistivity, ρ_i , from 295 °K to about 10 °K and for the ideal thermal resistivity, W_i , from above 100 °K to about 20 °K.

With certain exceptions (notably manganese), ρ_i follows approximately a Bloch–Grüneisen type of relation from room temperature down to about 0.2θ , but for $T \leq \theta/10$ the index m (in $\rho_i \propto T^m$) ranges from 3 to 5 and in some elements (e.g. Pt, Pd, Fe, Co and Ni) there appears to be a T^2 region (possibly characteristic of electron-electron interaction) at or below 10 °K. Values of the resistivity parameter, $\rho_i M\theta^2 \Omega^{\frac{1}{2}}/T$, appear to be greatest for group IV A and VII A elements and least for metals in groups VI A and some in group VIII (Co to Pt).

The reduced thermal resistivity W_i/W_∞ can be approximated by a function $(T/\theta)^2 J_3(\theta/T)$, although in many elements W_i falls more rapidly than T^2 for $T \le \theta/10$. In the elements of highest resistivity (e.g. Ti, Zr, etc.) a lattice component of thermal conductivity is probably significant and makes it likely that values of W_i deduced from $W_i = W - W_0$ are not truly representative of an electronic process.

Measurements on higher purity samples, particularly of Ti, Mn and V would be of interest. Also for many of these elements measurements of heat conduction in pure samples at temperatures of 200 to 400 °K would be useful.

We are very grateful to Mr F. Anglin and Dr M. T. Elford for their help with many of the measurements, to our colleagues Drs D. K. C. MacDonald, W. B. Pearson, Z. S. Basinski for discussions and metallurgical advice, to Mr W. Stockdale for some spectroscopic analyses and finally to Messrs F. Richardson and J. Broome for keeping us supplied with liquid helium.

APPENDIX

Notes are given below regarding purity, etc., of the specimens. These elaborate the brief details in table 1 for specimens concerning which we have made no previous report.

Titanium

Ti 2 (stated by Heraeus to be '... as pure as can be obtained by us...') had the copper leads welded to it.

For Ti 3, 4, 5 spectroscopic and gas analyses supplied by Dr Winegard showed $0.002 \% N_2$, $0.002 \% O_2$, 0.005 % Si, 0.001 % C and less than 0.01 % total of Mn, Cr, Mg, Cu and Fe. After chemically cleaning the rods in dilute acid, end sections were copper plated in a cyanide bath and leads attached to this with soft solder.

Zirconium

Zr 2, cut from an iodide-bar had copper leads welded to it. For Zr 3, Dr Betterton supplied analyses showing 132 p.p.m. Hf, 79 p.p.m. C, 24 p.p.m. Fe, 11 p.p.m. Ni, 21 to 50 p.p.m. O_2 , 3 to 50 p.p.m. N_2 , <100 p.p.m. of Zn and P, 2 to 7 p.p.m. each of Ca, Cr, Mo, Si, H_2 and a total of less than 10 p.p.m. of 18 other elements. Vickers Hardness was 58. It was arc cast, annealed 4 h at 1100 °C, swaged at room temperature, annealed for 15 min at 1000 °C and finally for 15 min at 800 °C in a vacuum of (1 to 2) \times 10⁻⁶ mm Hg. Fine copper leads were twisted round the wire and held by a conducting silver paste (Silverprint of General Cement Manufacturing Company, Illinois). Zr 3 was later cut into four lengths and these were held together by small clamps to form Zr 4. These small copper clamps had copper leads attached to them and good contact to the rods was ensured by a film of conducting silver paste between the clamp surface and the zirconium. As electrical resistance measurements were

not reproducible (in contrast to measurements of λ), Zr 4 was removed, the Silverprint was dissolved away and the clamps were tightened again. The specimen was then called Zr 4 a and was remounted in the cryostat.

Hafnium

No analysis for Hf1 was available, but it is believed to be rather similar to those specimens used by Adenstedt (1952) containing about 0.8 wt. % (\sim 1.6 at. %) Zr as the major impurity. The rod was electropolished, end sections were copper plated in a cyanide bath and leads attached with Zn+Cd solder.

For Hf2 and 3, analyses were supplied by Dr Betterton. Spectroscopic and neutron activation analyses showed 0.05 wt. % Zr in Hf2, plus Ca (10 p.p.m.), Fe (61 p.p.m.), Ni (18 p.p.m.), Si (17 p.p.m.), Ti (30 p.p.m.), Zn and P (each <100 p.p.m.); combustion analysis gave 0.03 wt. % C, while vacuum fusion indicated O_2 (7 p.p.m.), H_2 (10 p.p.m.), and N_2 (<5 p.p.m.). The iron content may have risen as much as 400 p.p.m. during swaging of the crystal bar. The minor impurities in Hf3 were similar but 3.8 to 4.2 wt. % (~8 at. %) Zr and 100 p.p.m. of O_2 were also present. Both specimens were mounted in an alumina tube with four small brass screws in pressure contact with points near the extremities and only ρ was measured.

Tantalum

Ta 1, stated by Heraeus to be 'as pure as can be obtained by us' was annealed and leads spot-welded to it.

Ta 2 and Ta 3 were each annealed by passing large electric currents through them in a vacuum ($\sim 10^{-5}$ mm Hg), first outgassing them and later raising their temperature almost to the melting point of tantalum for a minute or two. Ta 2 was afterwards mounted in an alumina tube (see Hf2 and 3) and Ta 3 was fitted with copper clamps (see Zr 4).

Molybdenum

Leads were attached to Mo 1 with silver solder. Owing to a slight uncertainty in the shape factor (l/A) two other wires—one of larger diameter—were later mounted in a clamping device, in which a more accurate estimate of the length l could be made. Then measurement of length, cross-section and electrical resistance at 295, 77.6 and 4.2 °K gave a reliable value of $\rho_{i(295)}$ with which the values of ρ for Mo 1 could be normalized.

Rhenium

Re 5, for which we have no analysis, was cut from a wire that had been electrically annealed close to its melting point (see Ta 2 and 3).

Iron

Fe 2 was prepared by Dr Z. S. Basinski of this laboratory, from the original (Vacuum Metals Co.) rod, by zone-melting in wet hydrogen gas to produce large crystals and later electrical annealing in high vacuum at about $600\,^{\circ}$ C to remove hydrogen. Spectrographic analyses done here indicated lines of Si ($\sim 0.004\,\%$), Mo ($\sim 0.003\,\%$), Mn ($\sim 0.003\,\%$), Cu, Ni, Co (each $< 0.004\,\%$), Sn ($< 0.0001\,\%$) and minute traces of Pb and Zr.

Cobalt

The cobalt wires were prepared by Johnson, Matthey and Co. from sponge for which spectrographic analyses indicated lines of Si (estimated 2 p.p.m.), Fe (5 p.p.m.), Al $(\sim 1 \text{ p.p.m.}), \text{ Mg, Cu } (< 1 \text{ p.p.m.}).$

Nickel

Supplier's analyses for rods from which Ni 2 and Ni 3 were drawn lists the following impurities: 10 p.p.m. Fe; 10 p.p.m. Si; 3 p.p.m. Cr and Mg; 2 p.p.m. Cu, Mn and Ca; 1 p.p.m. Ag.

Palladium

Pd 9 was drawn from JM 9401 for which the supplier's analysis lists: about 2 p.p.m. Cu; 1 p.p.m. each of Fe, Ca and Na; less than 1 p.p.m. of Ag, Mg and Si. Earlier specimens were made from JM 2928 for which analysis gave strong Ag lines and faint Ca, Cu, Si and Mg lines.

Platinum

Pt-T4 was a resistance thermometer, one of six whose calibrations above 11 °K are described in detail by Los & Morrison (1951). We used this thermometer to check our gas thermometry from 12 to 295 °K and also checked its resistance at the ice and oxygen points, finding them in agreement with the 1951 calibration to within a few thousandths of a degree. We also measured its residual resistance R_0 at about 1.2 to 2 °K and then measured R from 3 to 12 °K, later converting values of R to ρ with the aid of measurements on a length of thicker platinum wire, Pt 3.

Copper, silver, gold

The fine wires on which measurements of electrical resistance were made, and the rods on which one of us (G. K. W.) had earlier made thermal conductivity measurements were annealed specimens of very high purity.

REFERENCES

Adenstedt, H. K. 1952 Trans. Amer. Soc. Metals, 44, 949.

van Arkel, A. E. 1939 Reine Metalle. Berlin: Springer Verlag.

Baber, W. G. 1937 Proc. Roy. Soc. A, 158, 383.

Barratt, T. & Winter, R. M. 1925 Ann. Phys., Lpz., 77, 1.

Berman, R. 1951 Proc. Roy. Soc. A, 208, 90.

Berman, R. & MacDonald, D. K. C. 1951 Proc. Roy. Soc. A, 209, 368.

Bijl, D. 1957 Progress in low temperature physics, 2, 395. Amsterdam: North-Holland.

Bing, G., Fink, F. W. & Thompson, H. B. 1951 Report, United States Atomic Energy Commission-BMI-65.

Blackman, M. 1955 Handb. Phys. 7, 325.

Blau, F. 1905 Elektrotech. Z. 25, 198.

Bradshaw, F. J. & Pearson, S. 1956 Proc. Phys. Soc. B, 69, 441.

Bridgman, P. W. 1932-33 Proc. Amer. Acad. Arts Sci. 68, 27.

Coles, B. R. 1958 Phil. Mag. Suppl. 7, 40.

Deem, H. W. 1953 a Report United States Atomic Energy Commission-BMI-849.

Deem, H. W. 1953 b Report United States Atomic Energy Commission-BMI-853.

Dugdale, J. S. & MacDonald, D. K. C. 1955 Phys. Rev. 98, 1751.

Gerritsen, A. N. 1956 Handb. Phys. 19, 137.

Grüneisen, E. 1928 Handb. Phys. 13, 1.

Grüneisen, E. & Goens, E. 1927 Z. Phys. 44, 615.

Grüneisen, E. & Reddemann, H. 1934 Ann. Phys., Lpz., 20, 843.

de Haas, W. J. & de Boer, J. 1933 Physica, 1, 609.

de Haas, W. J. & de Nobel, J. 1938 Physica, 5, 449.

de Haas, W. J. & Voogd, J. 1928 Commun. Phys. Lab. Univ. Leiden, No. 194c.

Hampel, C. A. 1954 Rare metals handbook. New York: Reinhold.

Harper, A. F. A., Kemp, W. R. G., Klemens, P. G., Tainsh, R. J. & White, G. K. 1957 Phil. Mag. 2, 577.

Hoge, H. J. & Brickwedde, F. G. 1939 J. Res. Nat. Bur. Stand. Wash. 22, 351.

Horowitz, M. & Daunt, J. G. 1953 Phys. Rev. 91, 1099.

Hulm, J. K. & Goodman, B. B. 1957 Phys. Rev. 106, 659.

Jones, H. 1956 Handb. Phys. 19, 227.

Justi, E. 1949 Z. Naturf. 4a, 472.

Kannuluik, W. G. 1933 Proc. Roy. Soc. A, 141, 159.

Keesom, P. H. & Pearlman, N. 1956 Handb. Phys. 14, 282.

Kemp, W. R. G., Klemens, P. G., Sreedhar, A. K. & White, G. K. 1955 Phil. Mag. 46, 811.

Kemp, W. R. G., Klemens, P. G. & White, G. K. 1956 Austral. J. Phys. 9, 180.

Kemp, W. R. G., Klemens, P. G., Sreedhar, A. K. & White, G. K. 1956 Proc. Roy. Soc. A, 233, 480.

Klemens, P. G. 1954 Austral. J. Phys. 7, 64.

Klemens, P. G. 1956 Handb. Phys. 14, 198.

Leibfried, G. & Schlömann, E. 1954 Nachr. Ges. Wiss. Göttingen, II a, 71.

Los, J. M. & Morrison, J. A. 1951 Canad. J. Phys. 29, 142.

Lustman, B. & Kerze, F. 1955 The Metallurgy of zirconium. New York: McGraw-Hill.

MacDonald, D. K. C. 1947 J. Sci. Instrum. 24, 232.

MacDonald, D. K. C., White, G. K. & Woods, S. B. 1956 Proc. Roy. Soc. A, 235, 358.

McQuillan, A. D. & McQuillan, M. K. 1956 Titanium. London: Butterworths.

Meissner, W. 1915 Ann. Phys., Lpz., 47, 1001.

Meissner, W. & Voigt, B. 1930 Ann. Phys. Lpz., 7, 892.

Mendelssohn, K. 1956 Canad. J. Phys. 34, 1315.

Miller, G. L. 1954 Zirconium. London: Butterworths.

Mott, N. F. 1936 Proc. Roy. Soc. A, 153, 699.

Mott, N. F. & Jones, H. 1936 Theory of the properties of metals and alloys. Oxford University Press.

Mott, N. F. & Stevens, K. W. H. 1957 Phil. Mag. 2, 1364.

de Nobel, J. 1951 Physica, 17, 551.

Northcott, L. 1956 Molybdenum. London: Butterworths.

Olsen-Bär, M. 1956 Thesis, University of Oxford.

Pines, D. 1955 Solid state physics, 1, 368. New York: Academic Press.

Pines, D. 1956 Canad. J. Phys. 34, 1379.

Potter, H. H. 1941 Proc. Phys. Soc. 53, 695.

Powell, R. L. & Blanpied, W. A. 1954 Nat. Bureau Stand. Circular 556. Washington, D.C.: U.S. Govt. printing office.

Powell, R. W. 1955 Bull. Inst. Int. Froid, Annexe 1955-2, p. 115. Paris.

Powell, R. W. & Tye, R. P. 1956 J. Inst. Metals, 85, 185.

Powell, R. W. & Tye, R. P. 1955 Proc. IXth Int. Congr. Refrig. Paris, Commission 2, p. 083.

Powers, R. W., Schwartz, D. & Johnston, H. L. 1951 Tech. Rep. 264-5 Cryogenics Lab., Ohio State Univ.

Powers, R. W., Ziegler, J. B. & Johnston, H. L. 1951 Tech. Rep. 264-6, Cryogenics Lab., Ohio State Univ. Reddemann, H. 1935 Ann. Phys., Lpz., 22, 28.

302

G. K. WHITE AND S. B. WOODS

Rosenberg, H. M. 1955 Phil. Trans. A, 247, 441.

Rostoker, W. & Yamamoto, A. S. 1955 Trans. Amer. Soc. Metals, 47, 1002.

Rigney, C. J. & Bockstahler, L. I. 1951 Phys. Rev. 83, 220 (A).

Shiffman, C. A. 1952 Heat capacities of the elements below room temperature. Schenectady, New York: G.E.C. Research Publication Services.

Shull, C. G. & Wilkinson, M. K. 1953 Rev. Mod. Phys. 25, 100.

Silverman, L. 1953 J. Metals, 5, 631.

Sondheimer, E. H. 1950 Proc. Roy. Soc. A, 203, 75.

Sondheimer, E. H. 1957 Progress in low temperature physics, 2, 151. Amsterdam: North-Holland.

Straumanis, M. E. & Weng, C. C. 1955 Acta Cryst. 8, 367.

Sully, A. H. 1954 Chromium. London: Butterworths.

Sully, A. H. 1955 Manganese. London: Butterworths.

Treco, R. M. 1953 Trans. Amer. Soc. Metals, 45, 872.

Tottle, C. R. 1957 J. Inst. Metals, 85, 375.

Van den Berg, G. J. 1938 Thesis, University of Leiden.

Weeks, J. L. & Smith, K. F. 1955 J. Metals, 7, 1010.

White, G. K. 1953 a Proc. Phys. Soc. A, 66, 559.

White, G. K. 1953 b Proc. Phys. Soc. A, 66, 884.

White, G. K. 1953 c Austral. J. Phys. 6, 397.

White, G. K. & Woods, S. B. 1954 Phil. Mag. 45, 1343.

White, G. K. & Woods, S. B. 1955 Canad. J. Phys. 33, 58.

White, G. K. & Woods, S. B. 1957 a Canad. J. Phys. 35, 248.

White, G. K. & Woods, S. B. 1957 b Canad. J. Phys. 35, 346.

White, G. K. & Woods, S. B. 1957 c Canad. J. Phys. 35, 656.

White, G. K. & Woods, S. B. 1957 d Canad. J. Phys. 35, 892.

White, G. K. & Woods, S. B. 1958 Canad. J. Phys. 36, 875.

Wilson, A. H. 1938 Proc. Roy. Soc. A, 167, 580.

Wilson, A. H. 1953 The theory of metals. Cambridge University Press.

Woods, S. B. 1956 Canad. J. Phys. 34, 223.

Wolcott, N. M. 1955 Conférence de physique des basses températures, Paris 1955, p. 286. Annexe 1955-3. Bull. Inst. Int. Froid, Paris.

Ziman, J. M. 1954 Proc. Roy. Soc. A, 226, 436.